Главная » Просмотр файлов » Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации (1992)

Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации (1992) (1151790), страница 44

Файл №1151790 Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации (1992) (Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации (1992)) 44 страницаСосулин Ю.Г. Теоретические основы радиолокации и радионавигации (1992) (1151790) страница 442019-07-06СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 44)

6.2. СТАТИСТИЧЕСКАЯ ОПТИМИЗАЦИЯ РАЗРЕШЕНИЯ И РАСПОЗНАВАНИЯ СИГНАЛОВ Общие решающие правила. Так как прием сигналов осу- ществляется на фоне случайных помех и, кроме того, сами сигналы, как правило, флуктуируют, то задачи разрешения 219 и распознавания сигналов статистические. Поэтому оптимальное решение этих задач может быть получено на основе теории статистических решений.

Одним из разделов данной теории, непосредственно применимым к задачам разрешения и распознавания сигналов, является проверка многих статистических гипотез, адекватная многоальтернативному обнаружению сигналов. Рассмотрим многоальтернативное обнаружение сигналов в байесовской постановке. Предположим, что в течение фиксированного времени наблюдается реализация уеду случайного процесса уь протекающего в дискретном илн непрерывном времени. Процесс у~ принадлежит одному из (т+1) непересекающихся классов. Соответствующие состояния реализации у будем ассоциировать со значением параметра 0=0, 1, ..., т. Пусть 0=0 означает, что у содержит один шум, а б=ь означает, что у является смесью сигнала и шума, причем сигнал принадлежит 1-му классу, 1=1, ..., т.

В байесовской постановке задачи параметр 0 интерпретируется как дискретная случайная величина, априорные вероятности которой известны: р,.=р(6=1), ~~ р,=1. с=о В результате наблюдения реализации у и применения решающего правила 6 требуется принять одно из (гп+1) решений 6(у) = =Нь 1=0, ..., т, где д; — решение, согласно которому считается, что у принадлежит 1'-у классу, т. е, 0=11 Задается матрица потерь нс(1, сУ;)!1, й 1=0, 1, ..., т, где с(1, а';) — потери, возникаю|цие в результате принятия решения д; при условии, что имеет место состояние б=й Оптимальное (байесовское) решающее правило 6 ~ отыскивается путем минимизации среднего или же апостернорного риска (см.

$ 2.1). Последний в случае принятия решения 6(у) =Н; равен г, (у, д~) = ~ с Я М ) Р (б = Цу), г=в где Р(0=11у) — апостериорная вероятность состояния 6=1. Оптимальное правило многоальтериативного обнаружения состоит в принятии решения 6*(у) =дм если осуществляется неравенство П$ т ~ с(1,бь)Р(д 1)у)( 'Я с(1,Ир)Р(6=1(у) (6.3) с-о г-в для всех 1=0, ..., гп, )Фй. Это решающее правило можно записать по-другому, если ввести отношения правдоподобия Л~ — — ш (у)6 ()Ъ (у)6 =0), 1 01,..., т. (6.4) 220 Заметим, что Ло= — 1. Поделив обе части неравенства на апостериорную вероятность Р (6=0~у) и учтя, что Р(О= Ц у)/Р(6=01у) = =(р,/ро)Ль получим оптимальное правило многоальтернативного обнаружения вида т б'(у) =бд, если ,"Р с (1, с(д) р; Л, е г=.о (6.5) (6.6) (6.7) г,:- 0,1=1,..., т.

Если же (6.11) яд ъ 0 гд ) г~, ~ = 1, -., т, ) =г'=- уг, (6.12) то принимается оешение б*(у) =од — «есть сигнал Й-го класса» (Й 1, ...,т). 221 ( ~„'с((,с(~) р, Л;, /=О,...,т, 1'~й. г=о В частном случае, когда т=1 и с(0, Но) =с(1, 4) =О, из (5) сле- дует оптимальное правило двухальтернативного обнаружения: л, Л =в(у~6=1)lш (у~О=О) ~ р,с(0, й,)~р„с (1, с(,), л, совпадающее, конечно, с ранее найденным правилом (2.19).

Рассмотрим важный частный случай многоальтернативного об- наружения, когда составляющие матрицы потерь имеют вид 1 О, 1 = 1, с((,с17)= ~ ' ' 1,1=0,..., т, При таких потерях правило (5) упрощается: б' (у) = с(д, если рд Лд ) рл Лп! = О, ..., т, 1' ~ л. Если все априорные вероятности одинаковы: р;=р,(=О,...,т, (6.8) то решающее правило (7) сводится к выбору наибольшего отно- шения правдоподобия б*(у) =с(д, если Лд» Лл)=0,..., т,)Ф)о.

(6.9) Вместо отношений правдоподобия (4) можно формировать моно- тонные функции от них, в частности логарифмы гл=!пЛь 1=0, ... ..., т, во=О; при этом правило (9) эквивалентно б* (у) = с(д, если гд ~) гь 1 = О, ..., т, ) ~ А. (6.10) Согласно (10) принимается решение б*(у) =до — «нет сигнала» если Отметим, что к решающим правилам (9), (10) можно прийти и по-иному — с небайесовских позиций, оценивая неслучайный дискретный параметр б, принимающий т+1 значение (О=О, ..., т). Для пояснения этого введем условное отношение правдоподобия Л(у(д) =ш(у(0)1ш(у)0=0), О=О, ..., т; при 0=1 эта статистика совпадает с (4).

Используя метод максимального правдоподобия (6.13) (6.14) Л (у( б„) = шах Л (у(О), находим оценку О, которая равносильна решению о значении дис- кретного параметра О, выносимому в соответствии с правилом (9). Таким образом, в том частном случае, когда справедливы условия (6) и (8), байесовское правило многоальтернативного обнаружения и правило оценнвания дискретного параметра методом максималь- ного правдоподобия приводят к одному и тому же результату.

Мерой качества многоальтернативного обнаружения сигналов может служить средний риск, однако более наглядную меру ка- чества составляют вероятности ошибочных решений ()ы = Р (6 (У) = 4 ! О = 1), 1, 1 =- О, ..., т, ( ~ 1. Эти вероятности вычисляются по формулам Ры= Х '" (у(0=1) Ф, (6. 15) гбу) где область У;(у) ~У включает те реализации у= (уь ..., у ), для которых б(у) =А. В общем случае оптимального многоальтерна- тивного обнаружения области интегрирования У*,(у) (1=0, ..., т) определяются решающим правилом (5). При потерях (6) области У';(у) описываются правилами типа (7), (9). При двухальтерна- тнвном обнаружении вероятности (14), (15) совпадают с вероят- ностями ложной твероги Е н пропуска сигнала Ою.

()ш=Р, 6м=))с. Решающие правила (5), (7), вместе с формулами (!5) позво- ляют проводить синтез и анализ оптимальных систем многоальтер- нативного обнаружения, и в частности оптимальных систем раз- решения и распознавания сигналов. Для иллюстрации полученных общих результатов рассмотрим несколько конкретных задач. Детерминированные сигналы. Рассмотрим случай, когда в ка- честве модели сигнала используется наиболее простая модель— детерминированная функция. Предположим, что наблюдаемый процесс имеет вид р= ~' .' 0<(«т, а„о=о, (6.16) !зр(Ф)+$,, О= (, Е= 1,..., и, где ьч(~) — детерминированные сигналы; 5~ — белый гауссовский шум со спектральной плотностью Ую/2. Требуется по результатам 222 наблюдения у~ в течение времени [О, Т1 выяснить, какое из т+1 возможных состояний 6=0, ..., т имеет место, т.

е. необходимо решить задачу обнаружения и различения т детерминированных сигналов. Данная задача, по существу, и есть простейшая статистическая задача распознавания сигналов. Для синтеза оптимального устройства распознавания воспользуемся решающим правилом (1О). Логарифмы отношений правдоподобия в рассматриваемом случае определяются аналогично (2.43): Е; г; = — (' у, з; (1) гУ вЂ” — ', 1 = 1, ..., т, '»о о (6.17) г где Е;=) з'»(1)а( — энергия Рго сигнала. В этом случае устройсто во распознавания (рис. 6.2,а) представляет собой многоканальную схему из т корреляторов, на выходах которых формируются т корреляционные интегралы г';= ) у,з»(1)гй, 1=1, ..., т.

Значения о последних в момент окончания наблюдения Т поступают в решающее устройство РУ, работающее по алгоритму (11), (12) с учетом (17). Согласно этому алгоритму РУ принимает решение до (нет сигнала), если г'; =Е,)2, 1=1, ..., т, и решение о(» (есть сиг. нал А-го класса), если г'»)Е»)2, г'» — Е»72~г',— Е,)2, 1'=1, ..., т, ) ~й. В рассмотренной задаче наблюдаемый процесс при 0=1, ..., т содержал лишь один из т возможных сигналов (см. 16). Если же наблюдаемая реализация может содержать одновременно несколько сигналов, то возникает задача их разрешения. Положим для простоты, что одновременно могут наблюдаться не более друх сигналов, при этом наблюдаемый процесс зададим в виде 0=0, 0=1, к» з, (О+$н зо (О+ оо» з» (() + зо (1) + Бь (6.18) '22З Детерминированные сигналы з,(() и з»((), принимаемые на фоне белого шума $ь могут иметь, в частности, одинаковую форму и отличаться друг от друга значением какого-либо параметра, например зо(1) =з,(( — т), где время запаздывания т считается известным.

Необходимо по результатам наблюдения процесса (18) выяснить„какое из возможных состояний 6=0, ..., 3 имеет место. Ина- Рис 6.2. Структурные схемы оптимальных устройств распознавания детерминированных (а) и нвавидетерминнрованных (6) сигналов че говоря, необходимо решить, присутствуют в у1 полезные сигналы или нет; если присутствуют,— то два сигнала или один; если один,— то какой из двух. Данная четырехальтернативная задача обнаружения адекватна статистической задаче разрешения двух детерминированных сигналов. С другой стороны, эту же задачу можно интерпретировать как статистическую задачу распознавания четырех возможных ситуаций (18).

Таким образом, в рассматриваемой постановке статистическая задача разрешения адекватна задаче распознавания, при атом они могут быть решены в рамках общей задачи многоальтернативного обнаружения. Воспользовавшись алгоритмом (10) н учитывая, что г, и га определяются формулой (17), а 2 и т гв = — [ у, [з, (1) + з, (1)[ й — — у [ з, (Г) + з, (1)[в с(1, й(е о Фа о приходим к тому, что структурную схему оптимального устройства разрешения и распознавания двух детерминированных сигналов можно представить в виде схемы на рис.

6.2,а, с той только разницей, что число каналов т=З, причем опорное колебание в третьем канале за(() =зг(()+зх((). Синтезированная схема оптимального распознавания представлена на рис. 6.2,а в корреляционном варианте. Однако ее можно представить и в фильтровом варианте, заменив корреляторы согласованными фильтрами с импульсными характеристиками Ьг(1) хг(Т вЂ” 1), «=1, ..., пт. Применительно к рассмотренной задаче разрешения Ьа(1) =з,(т — 1)+ха(т — 1) =й, (1)+па И). (6.19) Квазидетерминированные сигналы. Рассмотрим задачи разрешения и распознавания применительно к сигналам со случайными амплитудами ьн и начальными фазами <р; з 4, а,, <Р„1) У' 2 а; Я; (1) соз [2 и ((а+ ~;) 1+ тР; (1) — <Р;[.

(6.20) 224 (6.23) не зависят от наблюдений. В соответствии с решающим правилом (10) и с учетом формул (25) и (24) на рис 6.2,6 построена структурная схема оптимального устройства распознавания сигналов (20), отличающихся доплеровским смещением частоты. Данная схема изображена в фильтровом варианте. Согласованные фильтры СФ; (1=1, ..., и) настроены на возможные доплеровские частоты 1ь На выходах амплитудных детекторов образуются квадраты огибающих корреляционных интегралов з'ги(1;), которые поступают в решающее устройство РУ, работающее по алгоритму (11), (12). Согласно этому алгоритму и формуле (25) принимается решение д« вЂ” «нет сигнала», если 4,(1т) <й,т(йм, 1=-1, ..., т. 8 — 100 (6.27) 225 Полагаем, что амплитуды и фазы распределены по рэлеевскому и равномерному законам соответственно: в, (а,) = (а,10,') ехр ( — ар2 о«1) (6.2 1) що (<ра) ! /2 и 0 ( ~ра (~ 2 и 1 1 ° гп законы амплитудной А;(1) и фазовой ф,(1) модуляции, а также несущая частота 1, известны: )ь 1=1, ..., т — возможные значения доплеровского смещения частоты.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6502
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее