Диссертация (1150437), страница 6
Текст из файла (страница 6)
Ïðîäèôôåðåíöèðóåì çàìåíó (13) ïî t. Ïîëó÷èìðàâåíñòâîP3 r3 + (3P3 h2 + P40 )r4 + (P50 + 3P3 h3 + 3h22 P3 + 4h2 P40 )r5 + dhX263+O r +|r vi | =r + (Φ2 + h2 )r2 +dϕX+ (Φ03 + 2h2 Φ2 + h3 )r3 + O r4 +|r2 vi | r2 +∂h3 ∂h3+r + (Φ2 + h2 )r2 + O(r3 ) r3 ++∂t∂ϕ 4∂h4 ∂h4∂h5 ∂h52++r + O(r ) r ++O(r) r5 +∂t∂ϕ∂t∂ϕ+ ṙ 1 + 2h2 r + 3h3 r2 + 4h4 r3 + 5h5 r4 .Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ r3 , r4 , r5 è, èñïîëüçóÿ ôîðìóëû (10), ïîëó÷èì ñèñòåìó äëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ çàìåíû(13).dh2 ∂h3+= P3 ,dϕ∂t ∂h∂h43+= P4 + G4 ,∂ϕ∂t∂h∂h g + 4 + 5 = P5 + G5 ,∂ϕ∂t56(15)1dh2∂ h̃3G4 = − CSb1 H1 + 3P3 h2 −(Φ2 + h2 ) −.(16)2dϕ∂ϕ11G5 = (C 3 sgn Cβ1 + S 2 b2 )H1 − CSb1 H2 + 3P3 h3 +221+ 3h2 2 P3 + 4h2 (P4 − CSb1 H1 )−2(17)dh2Φ3 − C 2 b1 H1 + 2h2 Φ2 + h3 −−dϕ∂ h̃4∂h3−(Φ2 + h2 ) −.∂ϕ∂ϕÏðåäñòàâèì ïðàâóþ ÷àñòü ïåðâîãî óðàâíåíèÿ ñèñòåìû (15) â âèäå (1.1.14).Ñ ó÷åòîì ôîðìóë (7) ïîëó÷èì óðàâíåíèådh2 ∂h3111+= ᾱ1 C 4 sgn C + ā1 CS 2 + (α1 − ᾱ1 )C 4 sgn C+dϕ∂t2221+ (a1 − ā1 )CS 2 .2 êà÷åñòâå ðåøåíèÿ äàííîãî óðàâíåíèÿ äîñòàòî÷íî âçÿòü ôóíêöèè1h2 =2Z(ᾱ1 C 4 sgn C + ā1 CS 2 )dϕ,h3 = h̃3 (t, ϕ) + ĥ3 (ϕ),(18)ãäå h̃3 (t, ϕ) = 21 C 4 sgn C (α1 − ᾱ1 )dt + 21 CS 2 (a1 − ā1 )dt, ĥ3 (ϕ) ôóíê-RRöèÿ, ïîäëåæàùàÿ îïðåäåëåíèþ.Çàìå÷àíèå 1.
Ãëàäêîñòü ïî ϕ ôóíêöèé h2 , h̃3 íå ìåíåå 3.Ïðåäñòàâèì ïðàâóþ ÷àñòü âòîðîãî óðàâíåíèÿ ñèñòåìû (15) â âèäå(1.1.14). Ïîëó÷èì óðàâíåíèå∂ h̃3 ∂h4+= P̄4 + Ḡ4 + P̂4 + Ĝ4 + P̃4 + G̃4 .∂ϕ∂t(19)Ïîêàæåì, ÷òî P̄4 + Ḡ4 = 0. Èç ôîðìóë (7) è ñâîéñòâà 4, âûòåêàåò ðàâåí-57ñòâî P̄4 = 0. Çàïèøåì ôóíêöèþ G4 áîëåå ïîäðîáíî. Ïîëó÷èì âûðàæåíèåZG4 = f1 (t)C 3 S + f2 (t)C 4 sgn C C 4 sgn Cdϕ+ZZ+ f3 (t)C 4 sgn C CS 2 dϕ + f4 (t)CS 2 C 4 sgn C+Z+ f5 (t)CS 2 CS 2 dϕ + f6 (t)SC 6 sgn C + f7 (t)C 3 S 3 ++ f8 (t)SC 3 sgn C + f9 (t)S 3 .Äàííîå ðàâåíñòâî ìîæíî çàïèñàòü â âèäåZ2d1G4 = f1 (t)C 3 S + f2 (t)C 4 sgn Cdϕ +2dϕZZ422+ f3 (t)C sgn C CS dϕ + f5 (t)CSC 4 sgn C+Z2d1CS 2 dϕ + f6 (t)SC 6 sgn C++ f5 (t)2dϕ+ f7 (t)C 3 S 3 + f8 (t)SC 3 sgn C + f9 (t)S 3 .Äëÿ äîêàçàòåëüñòâà òîãî, ÷òî Ḡ4 = 0 çàìåòèì, ÷òî âûïîëíÿþòñÿ ðàâåíñòâàZ2ω ZCS 2 C 4 sgn Cdϕ dϕ = 0,0Z2ω (20)C 4 sgn CZCS 2 dϕ dϕ = 0.0Äåéñòâèòåëüíî,Z2ω CS 2ZZZ2ω422C sgn Cdϕ dϕ = CSC dS dϕ =00Z2ω=CS22C S+2Z2CS dϕ dϕ = 0.058Z2ω C 4 sgn CZCS 2 dϕ dϕ =0Z2ωC2ZCS 2 dϕ dS =0Z2ω=−02ωZ=2ZS −2CS CS 2 dϕ + C 3 S 2 dϕ =CS 2ZCS 2 dϕ dϕ −0Z2ωC 3 S 3 dϕ = 0.0Òàêèì îáðàçîì ïîëó÷àåì, ÷òî Ḡ4 = 0.
 êà÷åñòâå ðåøåíèÿ óðàâíåíèÿ(19) äîñòàòî÷íî âçÿòü ôóíêöèèZĥ3 = (P̂4 + Ĝ4 )dϕ,h4 = h̃4 (t, ϕ) + ĥ4 (ϕ),(21)ãäå h̃4 = (P̃4 + G̃4 )dt, ĥ4 ôóíêöèÿ, ïîäëåæàùàÿ îïðåäåëåíèþ.RÇàìå÷àíèå 2. Ãëàäêîñòü ïî ϕ ôóíêöèé ĥ3 , h̃4 íå ìåíåå 2, ÷òî ñëåäóåò èç ôîðìóë (21),(18), (16), (11), (7) è çàìå÷àíèÿ 1.Ïðåäñòàâëÿÿ ïðàâóþ ÷àñòü òðåòüåãî óðàâíåíèÿ ñèñòåìû (15) â âèäå(1.1.14), ïîëó÷èì óðàâíåíèåg+∂ ĥ4 ∂h5+= P̄5 + Ḡ5 + P̂5 + Ĝ5 + P̃5 + G̃5 .∂ϕ∂t êà÷åñòâå ðåøåíèÿ äàííîãî óðàâíåíèÿ äîñòàòî÷íî âçÿòü ôóíêöèèZg = P̄5 + Ḡ5 ,ĥ4 =Z(P̂5 + Ĝ5 )dϕ,h5 =(P̃5 + G̃5 )dt.(22)Çàìå÷àíèå 3. Ãëàäêîñòü ïî ϕ ôóíêöèé ĥ4 , h̃5 íå ìåíåå 1, ÷òî ñëåäóåò èç ôîðìóë (22), (21),(18),(17), (11), (7), çàìå÷àíèé 1, 2.
 äàëüíåéøåì áóäåì ïîëàãàòü âûïîëíåíèå íåðàâåíñòâà g 6= 0, ïîñêîëüêó ìîæåò âûïîëíÿòüñÿ íåðàâåíñòâî P̄5 6= 0, ÷òî ñëåäóåò èç ôîðìóë(7).59Ðàññìîòðèì ñèñòåìó (14). Ïóñòü (r, ϕ, v)T ðåøåíèå äàííîé ñèñòåìû ñ íåêîòîðûìè íà÷àëüíûìè äàííûìè (r0 , ϕ0 , v0 )T â òî÷êå t = t0 . Äàëååðàññìîòðèì ñèñòåìóX563 ṙ = gr + O r +|r vi | ,X2 v̇ = Av + O r5 +|r vi | ,(23)â êîòîðóþ âìåñòî ïåðåìåííîé ϕ ïîäñòàâëåíà êîìïîíåíòà ϕ(t, ϕ0 ) ðåøåTíèÿ (r, ϕ, v)T . Î÷åâèäíî, ÷òî âåêòîð-ôóíêöèÿ (r(t, r0 ), v(t, v0 )) ðåøåíèå ñèñòåìû (23) c íà÷àëüíûìè äàííûìè (r0 , v0 ) ïðè t = t0 .Åñëè â ñèñòåìå (23) êîíñòàíòà g < 0, òî íóëåâîå ðåøåíèå ñèñòåìû (1) àñèìïòîòè÷åñêè óñòîé÷èâî, à åñëè g > 0, òî îíîíåóñòîé÷èâî.Òåîðåìà.Äîêàçàòåëüñòâî.
Ðàññìîòðèì ôóíêöèþ1U = r2 + Q(v1 , ..., vn ),2ãäå Q(v1 , ..., vn ) êâàäðàòè÷íàÿ ôîðìà, îïðåäåëÿåìàÿ óðàâíåíèåìãäå ||v|| =p∂Q∂Q, ...,∂v1∂vnAv = g||v||2 ,(24)v12 + . . . + vn2 .Àñèìïòîòè÷åñêàÿ óñòîé÷èâîñòü. Ïóñòü g< 0.Òîãäà, ó÷èòûâàÿ,÷òî âåùåñòâåííûå ÷àñòè ñîáñòâåííûõ ÷èñåë ìàòðèöû A îòðèöàòåëüíû,êâàäðàòè÷íàÿ ôîðìà Q(v1 , ..., vn ) îïðåäåëåííî-ïîëîæèòåëüíà. Ïîêàæåì,÷òî DU îïðåäåëåííî-îòðèöàòåëüíà. Èñïîëüçóÿ ñèñòåìó (23), ïîëó÷èì ðà-60âåíñòâî∂Q∂QDU = rṙ +,...,v̇ = gr6 + g||v||2 +∂v1∂vnXX742+O r +|r vi | +|r vi vj | .(25)Ïî îïðåäåëåíèþ O-ñèìâîëà äàííîå ðàâåíñòâî çàïèøåì â âèäå íåðàâåíñòâàDU ≤ gr6 + g||v||2 + Kr6 ||r, v|| +KKn 6r ||r, v|| + ||v||2 ||r, v||+22+ 2n2 K||v||2 ||r, v||2 .Äëÿ ëþáîãî ε > 0 íàéäåì a = min(δ1 , δ2 , δ3 ), ãäåε,δ1 =K(1 + n2 )2εδ2 = ,Krδ3 =ε,2n2 K(26)òàêîå, ÷òî èç íåðàâåíñòâà ||r, v|| < a áóäåò ñëåäîâàòü íåðàâåíñòâîDU < gr6 + g||v||2 + εr6 + ε||v||2 ,èç êîòîðîãî ïðè ε ≤−g2ïîëó÷àåì íåðàâåíñòâî DU < g2 (r6 ++ ||v||2 ).
Ïî òåîðåìå Ëÿïóíîâà îá àñèìïòîòè÷åñêîé óñòîé÷èâîñòè ñèñòåìû ïîëó÷àåì àñèìïòîòè÷åñêóþ óñòîé÷èâîñòü íóëåâîãî ðåøåíèÿ ñèñòåìû(23).Ïîêàæåì àñèìïòîòè÷åñêóþ óñòîé÷èâîñòü íóëåâîãî ðåøåíèÿ ñèñòåìû(1). Îöåíèì íîðìó ñèñòåìû (1).qXp222||x, y, z|| = x + y + ||z|| = ρ4 C 2 + ρ6 S 2 +wi2 ρ6 =qX= (r + O(r2 ))4 C 2 + (r + O(r2 ))6 S 2 + (r + O(r2 ))6(vi + O(r))2 =ppp2222= r C + O(r) ≤ r 1 + K|r| ≤ ||r, v|| 1 + K||r, v||.Ïîñêîëüêó, ñèñòåìà (23) óñòîé÷èâà, ò. å. ∀ ε > 0 ∃ δ > 0 : èç íåðàâåíñòâà√||r0 , v0 || < δ ⇒ ||r, v|| < ε, òî èç ||x0 , y0 , z0 || < δ 2 1 + Kδ ⇒ ||x, y, z|| <61√ε2 1 + Kε. Èç âòîðîãî ñâîéñòâà àñèìïòîòè÷åñêîé óñòîé÷èâîñòè ñèñòåìû(23) âûòåêàåò óòâåðæäåíèå, ÷òî ∃∆ > 0 : ||r0 , v0 || < ∆ ⇒ ||r, v|| −−−→ 0.t→∞√2Äëÿ ñèñòåìû (1) èç ||x0 , y0 , z0 || < ∆ 1 + K∆ ⇒ ||x, y, z|| −−−→ 0.Íåóñòîé÷èâîñòü.
Ïóñòü gt→∞> 0. Äëÿ äîêàçàòåëüñòâà âîñïîëüçóåì-ñÿ ñëåäóþùåé òåîðåìîé [2]: åñëè ñóùåñòâóåò òàêàÿ ôóíêöèÿ ËÿïóíîâàU (r, v) ∈ C 1 , ÷òî ìíîæåñòâîM + = {(r, v) : U (r, v) > 0, ||r, v|| < a}íå ïóñòî è ïðè (r, v) ∈ M + , t ≥ t0 , DU > 0, òî íóëåâîå ðåøåíèå ñèñòåìû(23) íåóñòîé÷èâî.Ðàññìîòðèì òàêîå ìíîæåñòâî (r, v), ÷òî1U = r2 + Q(v1 , ..., vn ) > 0,2(27)ãäå Q(v1 , ..., vn ) îòðèöàòåëüíî-îïðåäåëåííàÿ ôóíêöèÿ, â ñèëó ôîðìóëû(24).
Èç ôîðìóëû (25) ïî îïðåäåëåíèþ O-ñèìâîëà âûòåêàåò íåðàâåíñòâîKn 6KDU ≥ gr6 + g||v||2 − Kr6 ||r, v|| −r ||r, v|| − ||v||2 ||r, v||−22− 2n2 K||v||2 ||r, v||2 ,ãäå K > 0.Äëÿ ëþáîãî ε > 0 íàéäåì a = min(δ1 , δ2 , δ3 ), ãäå δ1 , δ2 , δ3 îïðåäåëÿþòñÿ êàê â ôîðìóëå (26), òàêîå, ÷òî èç íåðàâåíñòâà ||r, v|| < a áóäåòñëåäîâàòü íåðàâåíñòâîDU > gr6 + g||v||2 − εr6 − ε||v||2 ,â êîòîðîì ïîëàãàÿ, ÷òî ε ≤ g2 , ïîëó÷èì íåðàâåíñòâîDU >g 6r + ||v||2 ,262ïðè ||r, v|| < a. Òàêèì îáðàçîì íóëåâîå ðåøåíèå ñèñòåìû (23) íåóñòîé÷èâî.Ïîêàæåì íåóñòîé÷èâîñòü íóëåâîãî ðåøåíèÿ ñèñòåìû (1) â ñèëó íåóñòîé÷èâîñòè íóëåâîãî ðåøåíèÿ ñèñòåìû (23).
Îöåíèì íîðìó ñèñòåìû(1).pp222||x, y, z|| = x + y + ||z|| ≥ x2 + y 2 =ppp= ρ4 C 2 (ϕ) + ρ6 S 2 (ϕ) > kρ6 + O(ρ7 ) = r3 k + O(r),(28)ãäå k = min(C 2 + S 2 ).Èç íåóñòîé÷èâîñòè ñèñòåìû (23) âûòåêàåò ñëåäóþùåå: ñóùåñòâóåòε0 > 0 è ìîìåíò âðåìåíè t = T òàêèå, ÷òî äëÿ ëþáûõ r0 , v0 âûïîëíÿåòñÿðàâåíñòâîpr2 (T ) + ||v(T )||2 = ε0 .(29)Ó÷èòûâàÿ ôîðìóëû (29), (28), (27) è ñâîéñòâî, ÷òî ñóùåñòâóåò const == −λ2 òàêàÿ, ÷òî âûïîëíÿåòñÿ íåðàâåíñòâî Q(v1 , ..., vn ) ≤ −λ2 ||v||2 , ïîëó÷èì, ÷òî äëÿ ëþáûõ x0 , y0 , z0 èç äîñòàòî÷íî ìàëîé îêðåñòíîñòè âûïîëíÿåòñÿ íåðàâåíñòâîvuKε0uq||x, y, z|| >k−t3(1 + 2λ1 2 ) 21 + 2λ1 2ε30ïðè t = T . 63 3. Áèôóðêàöèÿ ðîæäåíèÿ èíâàðèàíòíîãî òîðàÐàññìîòðèì ñèñòåìó äèôôåðåíöèàëüíûõ óðàâíåíèéẋ = y + X(t, x, y, z, ε),ẏ = −x2 sgn x + Y (t, x, y, z, ε), ż = Az + Z(t, x, y, z, ε),(1)ãäå z = (z1 , .
. . , zn ).Ïóñòü ôóíêöèè X , Y , Z äîñòàòî÷íî ãëàäêèå íåëèíåéíîñòè ïî ïåðåìåííûì x, y , zi è ìàëîìó ïàðàìåòðó ε â íåêîòîðîé îêðåñòíîñòè íóëÿ, àïîðÿäîê ìàëîñòè ôóíêöèè Y íå íèæå ïÿòîãî, åñëè x ïðèïèñûâàòü âòîðîéïîðÿäîê, y òðåòèé, à zi è ε ÷åòâåðòûé. Ïîëîæèì òàêæå, ÷òî äàííûåôóíêöèè íåïðåðûâíû è 2π - ïåðèîäè÷íû ïî t è âûïîëíÿþòñÿ ðàâåíñòâàX(t, 0, 0, 0, ε) = 0, Y (t, 0, 0, 0, ε) = 0, Z(t, 0, 0, 0, ε) = 0. Ìàòðèöà A ãèïåðáîëè÷åñêàÿ.Ïðåäñòàâèì ôóíêöèè X , Y , Z , èñïîëüçóÿ ôîðìóëó Òåéëîðà äëÿ ìíîãèõ ïåðåìåííûõ, â âèäåX = α1 (t)x2 + α2 (t)xy + α3 (t)y 2 + α4 (t)x3 + β1 (t)εx+= β2 (t)εy + γ1 (t)zx + γ2 (t)zy + X ∗ ,Y = a1 (t)xy + a2 (t)y 2 + a3 (t)x3 + a4 (t)x2 y + b1 (t)εx+(2)∗+ b2 (t)εy + c1 (t)zx + c2 (t)zy + Y ,Z = A1 (t)x2 + A2 (t)xy + A3 (t)y 2 + A4 (t)x3 + B1 (t)εx++ B2 (t)zx + Z ∗ ,ãäå γ1 (t), γ2 (t), c1 (t), c2 (t) âåêòîð-ñòðîêè, Ai (t), Z ∗ âåêòîð-ñòîëáöû,64B1 (t), B2 (t) ìàòðèöû.XX∗X = O x4 + |x2 y| + |xy 2 | + |y 3 | +|εzi | +|zi zj |+XX22+ (x + y)|zi | + ε + |x + y||zi | + ε +X3 +|zi | + ε,XX∗Y = O x4 + |x3 y| + |xy 2 | + |y 3 | +|εzi | +|zi zj |+XX22+ (x + y)|zi | + ε + (|x| + |y|)|zi | + ε +X3 +|zi | + ε,X XX∗4Z =O x +y|zi | + ε +|εzi | +|zi zj |+XX22+x|zi | + |y| + ε + |x||zi | + |y| + ε +X3 +|zi | + |y| + ε,(2) ñèñòåìå (1) ñäåëàåì çàìåíó ïåðåìåííûõx = ρ2 C(ϕ),y = −ρ3 S(ϕ),(3)ãäå ρ > 0, à C , S ââåäåííûå ðàíåå ôóíêöèè.
Ïîëó÷èì ñèñòåìó 2123Xt,ρC,−ρS,z,εC sgn C−ρ̇=2ρ123−Yt,ρC,−ρS,z,εS,22ρ3ϕ̇ = ρ − 2 X t, ρ2 C, −ρ3 S, z, ε S−2ρ123−Yt,ρC,−ρS,z,εC,3ρ ż = Az + Z t, ρ2 C, −ρ3 S, z, ε .65(4)Èç ðàâåíñòâ (2), (3) ïîëó÷àåì ðàâåíñòâàX(t, ρ2 C, −ρ3 S, z, ε) = α1 C 2 ρ4 − α2 CSρ5 + (α3 S 2 + α4 C 3 )ρ6 ++ β1 Cερ2 − β2 Sερ3 + Cγ1 zρ2 − Sγ2 zρ3 +XXX72 244+ O ρ + ε ρ + ερ +|εzi | +|ρ zi | +|zi zj | ,Y (t, ρ2 C, −ρ3 S, z, ε) = −a1 CSρ5 + (a2 S 2 + a3 C 3 )ρ6 −− a4 C 2 Sρ7 + b1 Cερ2 − b2 Sερ3 + Cc1 zρ2 − Sc2 zρ3 +XXX842 24+ O ρ + ερ + ε ρ +|zi zj | +|εzi | +|zi ρ | ,(5)Z(t, ρ2 C, −ρ3 S, z, ε) = A1 C 2 ρ4 − A2 CSρ5 ++ (A3 S 2 + A4 C 3 )ρ6 + CB1 ερ2 + CB2 zρ2 +XXX732 23+ O ρ + ερ + ε ρ +|εzi | +|ρ zi | +|zi zj | ,Ïîäñòàâèâ äàííûå ðàâåíñòâà â ñèñòåìó (4), ïîëó÷èì ñèñòåìóρ̇ = P3 ρ3 + P4 ρ4 + P5 ρ5 + Q1 ε + Q2 ερ + P0 z + P1 zρ+XX |εzi | X |zi zj | ,+O|ρ2 zi | + ρ6 + ερ2 + ε2 +ρ2ρ2εz234ϕ̇=ρ+Φρ+Φρ+Φρ+Θ+Θε+Φ+ Φ1 z+234120ρρXε2 X |εzi | X |zi zj |5+O+,|ρzi | + ρ + ρε + +33ρρρż = Az + A1 C 2 ρ4 − A2 CSρ5 + (A3 S 2 + A4 C 3 )ρ6 +22732 2+CBερ+CBzρ+Oρ+ερ+ερ+12XXX +O|ρ3 zi | +|εzi | +|zi zj | ,66(6)ãäåα1 4a1α2a2C sgn C + CS 2 , P4 = − SC 3 sgn C − S 3 −2222a3 3α3 2 2α4 5a4 2 2− C S, P5 =S C sgn C +C sgn C +C S ,222233α1 2C S + a1 C 2 S, Φ3 = α2 CS 2 − a2 CS 2 − a3 C 4 ,Φ2 = −223α3 3 3α4 3b1Φ4 = a4 C 3 S −S −C S, Q1 = − CS,222β1 3b2 23β1Q2 = C sgn C + S , Θ1 = −b1 C 2 , Θ2 = b2 CS −CS,222c1γ1c2P0 = − CS, P1 = C 3 sgn C + S 2 , Φ0 = −c1 C 2 ,2223γ1Φ1 = c2 CS −CS.2P3 =Ëåììà 1.