Диссертация (1150437), страница 7
Текст из файла (страница 7)
Ñóùåñòâóåò(7)çàìåíà âèäàz = w + W4 (t, ϕ)ρ4 + W5 (t, ϕ)ρ5 + W6 (t, ϕ)ρ6 + W (t, ϕ)ερ2 ,(8)êîòîðàÿ ïåðåâîäèò ñèñòåìó (6) â ñèñòåìóρ̇ = P3 ρ3 + (P4 + P0 W4 )ρ4 + (P5 + P0 W5 + P1 W4 )ρ5 +X622+ Q1 ε + Q2 ερ + O|wi | + ρ + ερ + ε +XX|ww||εw|iji+O+,22ρρ23 ϕ̇ = ρ + Φ2 ρ + (Φ3 + Φ0 W4 )ρ +ε+ (Φ4 + Φ0 W5 + Φ1 W4 )ρ4 + Θ1 + Θ2 ε+ρX2X |εwi | X |wi wj | |w|εi5+O+ ρ + ρε + ++,33ρρρρXX7322ẇ = Aw + O ρ + ερ + ε ρ +|ρ wi | +|εwi | +XX |ε2 wi | X |εwi wj ||wi wj | ++. Oρρ67(9)Äîêàçàòåëüñòâî. Ïðîäèôôåðåíöèðóåì çàìåíó (8) ïî t. Ïîëó÷èìðàâåíñòâîX∂W4 ∂W4|wi |ρ + Φ 2 ρ2 + Oẇ +++ ρ3 +∂t∂ϕρXXε|εwi ||wi wj |∂W54+ +++ρ+ρρ3ρ3∂tXX |εwi | X |wi wj | ∂W5ε|wi |+ρ+O+ ρ2 + ++ρ5 +33∂ϕρρρρXX |wi wj | ∂W6 ∂W6ε X |εwi ||wi |++O+ρ+ ++ρ6 +33∂t∂ϕρρρρXXX∂W∂W|wi |ε|εwi ||wi wj |++O+ ρ+ ++ερ2 +33∂t∂ϕρρρρX|εwi | |wi wj |4W4 ρ3 + O(ρ4 )++ P3 ρ 3 + O ρ 4 + ε +|wi | + 2 +2ρρ+2W ρε) = A(w + W4 ρ4 + W5 ρ5 + W6 ρ6 + W ερ2 )++ A1 C 2 ρ4 − A2 CSρ5 + (A3 S 2 + A4 C 3 + CB2 W4 )ρ6 +XX27322+ CB1 ερ + O ρ + ερ + ε ρ +|ρ wi | +|εwi |+XX |ε2 wi | X |εwi wj |+|wi wj | +.+ρρÏðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ ρ4 , ρ5 , ρ6 , ερ2 , ïîëó÷èì ñèñòåìû äëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ çàìåíû (8).∂W4= AW4 + A1 C 2 ,∂t∂W4 ∂W5+= AW5 − A2 CS,∂ϕ∂t(10)∂W4∂W5 ∂W623Φ2 +++ 4W4 P3 = AW6 + A3 S + A4 C + CB2 W4 ,∂ϕ∂ϕ∂t∂W= AW + CB1 .∂tÄëÿ ïåðâîé ñèñòåìû èç ôîðìóë (10) ïîëó÷àåì åäèíñòâåííîå ïåðèîäè÷åñ68êîå ïî t, ϕ ðåøåíèå−1 2W4 = E − e2πAC (ϕ)Zte(t−s)A A1 (s)ds = C 2 V4 (t),(11)t−2πãëàäêîñòü êîòîðîãî ïî ϕ ðàâíà 4.
Èç âèäà âòîðîé ñèñòåìû ôîðìóë (10)ñëåäóåò, ÷òî ñóùåñòâóåò åäèíñòâåííîå ïåðèîäè÷åñêîå ïî t, ϕ ðåøåíèåW5 = − E − e2πA −1Zte(t−s)A∂W4+ A2 CS ds = CSV5 (t),∂ϕ(12)t−2πãëàäêîñòü êîòîðîãî ïî ϕ ðàâíà 3. Äëÿ òðåòüåé ñèñòåìû ðàâåíñòâ (10)ñóùåñòâóåò åäèíñòâåííîå ïåðèîäè÷åñêîå ïî t, ϕ ðåøåíèå, ãëàäêîñòü êîòîðîãî ïî ϕ ðàâíà 2. Íàêîíåö, äëÿ ïîñëåäíåé ñèñòåìû ðàâåíñòâ (10) ñóùåñòâóåò åäèíñòâåííîå ïåðèîäè÷åñêîå ïî t, ϕ ðåøåíèå.
Ëåììà 2. Ñóùåñòâóåòçàìåíà âèäàρ = r + h2 (ϕ)r2 + h3 (t, ϕ)r3 + h4 (t, ϕ)r4 + h5 (t, ϕ)r5 ,(13)êîòîðàÿ ïåðåâîäèò ñèñòåìó (9) â ñèñòåìódh2ṙ = gr5 + Q1 ε + Q2 − 2h2 Q1 − Θ1εrdϕX |εwi | X |wi wj | X+ O r6 + εr2 + ε2 ++|wi | +,22rrε ϕ̇ = r + Ψ2 r2 + Ψ3 r3 + Ψ4 r4 + Θ1 + (Θ2 − Θ1 h2 )ε+r2XXX |wi wj | ε|w||εw|ii+ O r5 + εr + +++,33rrrrXX7322ẇ = Aw + O r + εr + ε r +|r wi | +|εwi | +XX |ε2 wi | X |εwi wj | |wi wj | ++, +Orr69(14)ãäåΨ2 = h2 + Φ2 ,Ψ3 = h3 + 2Φ2 h2 + Φ3 + Φ0 W4 ,Ψ4 = h4 + (h22 + 2h3 )Φ2 + 3h2 (Φ3 + Φ0 W4 ) + Φ4 +(15)+ Φ 0 W5 + Φ 1 W4 .Äîêàçàòåëüñòâî. Ïðîäèôôåðåíöèðóåì çàìåíó (13) ïî t.
Ïîëó÷èìðàâåíñòâîεdh2 r + Ψ2 r 2 + Ψ3 r 3 + Θ1 +ṙ 1 + 2h2 r + 3h3 r + 4h4 r + 5h5 r +dϕrX |εwi | X |wi wj |ε2 X |wi |+O r4 + ε + +++r2+33rrrrX |εwi |ε X |wi |∂h3 ∂h3+r + Ψ2 r 2 + O r 3 + ++++∂t∂ϕrrr3X |wi wj | ε X |wi |∂h4 ∂h423++r+O r + ++r +r3∂t∂ϕrrX |εwi |X |wi wj | ∂h∂hε X |wi |554++r++Or+++r3r3∂t∂ϕrrX |εwi | X |wi wj | ++r5 = P3 r3 + (3h2 P3 + P4 + P0 W4 )r4 +33rr234+ 3P3 h3 + 3P3 h22 + 4h2 (P4 + P0 W4 ) + P5 + +P0 W5 + P1 W4 ) r5 +X |wi wj | XX |εwi | +|wi | ++ Q1 ε + Q2 εr + O r6 + εr2 + ε2 +.r2r2Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ r3 , r4 , r5 , ïîëó÷èì ñèñòåìóäëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ çàìåíû (13).70dh2 ∂h3+= P3 ,dϕ∂tdh∂h∂h 2 Ψ2 + 3 + 4 = P4 + 3P3 h2 + P0 W4 ,dϕ∂ϕ∂tdh2∂h3∂h4 ∂h5g+Ψ3 +Ψ2 ++= P5 + 3P3 h3 +dϕ∂ϕ∂ϕ∂t + 3P3 h2 + 4h2 (P4 + P0 W4 ) + P0 W5 + P1 W4 .2(16)Ïðåäñòàâèì ïðàâóþ ÷àñòü ïåðâîãî óðàâíåíèÿ äàííîé ñèñòåìû â âèäå(1.1.14).
Ñ ó÷åòîì ôîðìóë (7) ïîëó÷èì óðàâíåíèå11dh2 ∂h3+= ᾱ1 C 4 sgn C + ā1 CS 2 +dϕ∂t2211+ (α1 − ᾱ1 )C 4 sgn C + (a1 − ā1 )CS 2 .22 êà÷åñòâå ðåøåíèÿ äàííîãî óðàâíåíèÿ äîñòàòî÷íî âçÿòü ôóíêöèèZ1(ᾱ1 C 4 sgn C + ā1 CS 2 )dϕ, h3 = h̃3 (t, ϕ) + ĥ3 (ϕ),(17)h2 =2RRãäå h̃3 (t, ϕ) = 21 C 4 sgn C (α1 − ᾱ1 )dt + 21 CS 2 (a1 − ā1 )dt, ĥ3 (ϕ) ôóíêöèÿ, ïîäëåæàùàÿ îïðåäåëåíèþ.Çàìå÷àíèå 1. Ãëàäêîñòü ïî ϕ ôóíêöèé h2 , h̃3 íå ìåíåå 3.Ïðåäñòàâèì âòîðîå óðàâíåíèå ñèñòåìû (16) â âèäådĥ3 ∂h4+= P4 + E4 ,dϕ∂t(18)dh2∂ h̃3Ψ2 −+ 3P3 h2 + P0 W4 .dϕ∂ϕ(19)ãäåE4 = −Ðàçëîæèì ïðàâóþ ÷àñòü óðàâíåíèÿ (18) â âèäå (1.1.14). Ïîëó÷èì óðàâíåíèådĥ3 ∂h4+= P̄4 + Ē4 + P̂4 + Ê4 + P̃4 + Ẽ4 .dϕ∂t71(20)Ïîêàæåì, ÷òî ñïðàâåäëèâî ðàâåíñòâî P̄4 +Ē4 = 0. Äåéñòâèòåëüíî, P̄4 = 0,÷òî ñëåäóåò èç ôîðìóë (7) è ñâîéñòâà 4.
Ïîêàæåì, ÷òî Ē4 = 0. Çàïèøåìôîðìóëó (19) áîëåå ïîäðîáíî. Ïîëó÷èì ðàâåíñòâî Z ᾱā11 41 4C sgn C + CS 2C sgn C+E4 = −222ā13+ CS 2 dϕ − α1 C 2 S + a1 C 2 S +22ZZS333+ 2SC sgn C (α1 − ᾱ1 )dt − − + SC sgn C(a1 − ā1 )dt+2Z31+ (a1 CS 2 + α1 C 4 sgn C) (ā1 CS 2 + ᾱ1 C 4 sgn C)dϕ − C 3 Sc1 V4 .42Âûïîëíÿÿ ýëåìåíòàðíûå ïðåîáðàçîâàíèÿ, ïîëó÷èì ðàâåíñòâîZ21dE4 = f1 (t)C 3 S + f2 (t)C 4 sgn Cdϕ +2dϕZZ422+ f3 (t)C sgn C CS dϕ + f4 (t)CSC 4 sgn Cdϕ+Z2d1CS 2 dϕ + f6 (t)SC 6 sgn C++ f5 (t)2dϕ ᾱ+ f7 (t)C 3 S 3 + f8 (t)SC 3 sgn C + f9 (t)S 3 .Èñïîëüçóÿ ñâîéñòâà 2, 3, 4 è òîæäåñòâî (1.1.7), ïîëó÷èì ðàâåíñòâî Ē4 == 0.
 êà÷åñòâå ðåøåíèÿ óðàâíåíèÿ (18) äîñòàòî÷íî âçÿòü ôóíêöèèZĥ3 = (P̂4 + Ê4 )dϕ, h4 = h̃4 (t, ϕ) + ĥ4 (ϕ),(21)ãäå h̃4 = (P̃4 + Ẽ4 )dt, ĥ4 ôóíêöèÿ, ïîäëåæàùàÿ îïðåäåëåíèþ.RÇàìå÷àíèå 2. Ãëàäêîñòü ïî ϕ ôóíêöèé ĥ3 , h̃4 íå ìåíåå 2, ÷òî ñëåäóåò èç ôîðìóë (21), (19), (15), (11), (7) è çàìå÷àíèÿ 1.Ïðåäñòàâèì òðåòüå óðàâíåíèå ñèñòåìû (16) â âèäåg+∂ ĥ4 ∂h5+= P5 + E 5 ,∂ϕ∂t72(22)ãäåE5 = −dh2∂h3∂ h̃4Ψ3 −Ψ2 −+ 3P3 h3 + 3P3 h22 +dϕ∂ϕ∂ϕ(23)+ 4h2 (P4 + P0 W4 ) + P0 W5 + P1 W4 .Ïðåäñòàâëÿÿ ïðàâóþ ÷àñòü óðàâíåíèÿ (22) â âèäå (1.1.14), ïîëó÷èì óðàâíåíèåg+dĥ4 ∂h5+= P̄5 + Ē5 + P̂5 + Ê5 + P̃5 + Ẽ5 .dϕ∂t êà÷åñòâå ðåøåíèÿ äàííîãî óðàâíåíèÿ äîñòàòî÷íî âçÿòü ôóíêöèèZg = P̄5 + Ē5 ,ĥ4 =Z(P̂5 + Ê5 )dϕ,h5 =(P̃5 + Ẽ5 )dt.(24)Çàìå÷àíèå 3.
Ãëàäêîñòü ïî ϕ ôóíêöèé ĥ4 , h̃5 íå ìåíåå 1, ÷òî ñëåäóåò èç ôîðìóë (24), (23), (15), (12), (11), (7) è çàìå÷àíèé 1, 2. Âûðàæåíèå P̄5 + Ē5 ñîäåðæèò12ωR2ωC 2 S 2 dϕ 6= 0. Ñëåäîâàòåëüíî, ïî0ïðèíöèïó îáùåãî ïîëîæåíèÿ áóäåì ñ÷èòàòü, ÷òî âûïîëíåíî íåðàâåíñòâîg = P̄5 + Ē5 6= 0. ñèñòåìå (14) âûïîëíèì çàìåíó ïåðåìåííûõ3w = ε 2 v,r=√4ε(α + u),Ïîëó÷èì ñèñòåìó73|u| < α.(25)√554244εu̇=gεα+5αu+O(u)+ Q1 ε+5dh24 (α + u)++Q−2hQ−Θε2211dϕ332 (α + u)6 + ε 2 (α + u)2 + ε2 ++Oε!53XXX23|ε vi vj ||ε vi |2v | +√√++|ε,i22ε(α+u)ε(α+u)√√3244 (α + u)3 +ε(α+u)+Ψε(α+u)+Ψεϕ̇=23ε+ Ψ4 ε(α + u)4 + Θ1 √+ (Θ2 − Θ1 h2 )ε+4ε(α + u)55ε2544++ O ε (α + u) + ε (α + u) + √4ε(α + u)!533XXX|ε vi vj ||ε 2 vi ||ε 2 vi |√,+++334ε(α + u)4 (α + u)34 (α + u)3εε 73379224 (α + u)7 + ε 4 (α + u)3 + ε 4 (α + u)+εv̇=Aεv+OεXX 5X222v | ++|ε(α+u)v|+|ε|ε3 vi vj |+ii!74XX2|ε vi vj ||ε vi |+. +11ε 4 (α + u)ε 4 (α + u)Âûïîëíÿÿ â äàííîé ñèñòåìå ýëåìåíòàðíûå ïðåîáðàçîâàíèÿ, ïîëó÷èì ñèñòåìó 532u̇ = Q1 ε 4 + U1 ε + U2 εu + O ε 4 + εu ,√√3Θ12344+εα+αΨε+αΨ+ϕ̇=ε23α√44+αΨ+Θ−Θhε+εu+4212 5√√ 2344+ 2αΨ2 εu + O ε + ε u + εu ,√ v̇ = Av + O 4 ε ,74(26)ãäådh2U1 = gα5 + Q2 − 2h2 Q1 − Θ1α,dϕdh2.U2 = 5gα4 + Q2 − 2h2 Q1 − Θ1dϕ(27)√√3u = s + εF̂0 (ϕ) + ε 4 F̃0 (t, ϕ) + εsF1 (ϕ)+√√+ εs2 F2 (ϕ) + εs3 F3 (ϕ),(28)Ëåììà 3.
Ñóùåñòâóåòçàìåíà ïåðåìåííûõ âèäàïåðåâîäÿùàÿ ñèñòåìó (26) â ñèñòåìó 532444ṡ = S1 ε + S2 εs + O ε + εs + ε s ,√√3Θ1234+ F̂0 )ε 4 +εα+αΨϕ̇=2 ε + (α Ψ3 +α√44F̂)ε++(αΨ+Θ−Θh+F̃+2αΨεs+0421202 5√√ 2344+ 2αΨ2 εs + O ε + ε s + εs ,4 v̇ = Av + O √ε ,(29)dF̂0 ∂ F̃0−α,dϕ∂ϕdF̂0 ∂ F̃0dF1S2 = U2 − 2αΨ2−− α2 Ψ2.dϕ∂ϕdϕ(30)ãäåS1 = U1 − α2 Ψ2Äîêàçàòåëüñòâî. Ïðîäèôôåðåíöèðóåì çàìåíó (28) ïî t. Ïîëó÷èìðàâåíñòâîdF̂0−dϕ!dF̂0 ∂ F̃0dF1U2 − 2αΨ2−− α2 Ψ2εs+dϕ∂ϕdϕ3454Q1 ε + U1 ε + U2 εs + ε + εs!−∂ F̃0α ε+∂ϕ752=U1 − α2 Ψ2√ dF̂0 √√4+ εεα + α2 Ψ2 ε+dϕ√ 2 √√344++ εs + 2αΨ2 εs + O ε + εs!√√√3∂ F̃0 ∂ F̃0 4++ ε4εα + 4 εs + O( ε) +∂t∂ϕ 3 √ √√ dF1 √√244εα + α Ψ2 ε + εs + O ε 4 + εs ++ εsdϕ√ dF2 √√√√ √ dF3 √√4+ εs2( 4 εα + 4 εs + O( ε)).εα + 4 εs + O( ε) + εs3dϕdϕ54342+ O ε + εs + ε s43333Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ ε 4 , ε 4 u, ε 4 u2 , ε 4 u3 , ïîëó÷èìñèñòåìó (1.3.18).
Çàïèøåì áîëåå ïîäðîáíî ôîðìóëû (30). Ïîëó÷èì ðàâåíñòâàdF̂0dh2α − α2 Ψ2−S1 = gα + Q2 − 2h2 Q1 − Θ1dϕdϕ∂ F̃011532−α = gα +β1 C sgn C + b2 S α+∂ϕ22ZZᾱ1āb11+ αb1 CS C 4 sgn Cdϕ + αCS CS 2 dϕ+2 2ā1 b1 3 2ᾱ1 b1 6C sgn C +C S α++22Zα3α+ b̄1 CS (ᾱ1 C 4 sgn C + ā1 CS 2 )dϕ −b̄1 α1 C 3 S 2 +44a1∂ F̃0+ b̄1 α C 3 S 2 −α.2∂ϕ5dh2dF̂0 ∂ F̃0− 2αΨ2−−dϕdϕ∂ϕdF111− α2 Ψ2= 5gα4 + β1 C 3 sgn C + b2 S 2 +dϕ22Z1+ b1 CSᾱ1 C 4 sgn C + ā1 CS 2 dϕ+2 31+ b1 C 2 ᾱ1 C 4 sgn C + ā1 CS 2 − b̄1 α1 C 3 S 2 +22S2 = 5gα4 + Q2 − 2h2 Q1 − Θ176(31)Zb̄1ᾱ1 C 4 sgn C + ā1 CS 2 dϕ++ b̄1 a1 C 3 S 2 + CS231+ α1 b̄1 C 3 S 2 − a1 b̄1 C 3 S 2 −42Zb̄1− CSᾱ1 C 4 sgn C + ā1 CS 2 dϕ.4Ëåììà 4.