Диссертация (1150437), страница 5
Текст из файла (страница 5)
 äàëüíåéøåì ýòè óñëîâèÿñ÷èòàþòñÿ âûïîëíåííûìè.2. Ñóùåñòâîâàíèå èíâàðèàíòíîãî òîðà ñèñòåìå (6) ñäåëàåì çàìåíó ïåðåìåííûõx = rCs(ϕ),y = −r2 Sn(ϕ),(7)ãäå Cs(ϕ), Sn(ϕ) ââåäåííûå À. Ì. Ëÿïóíîâûì [5] ôóíêöèè, îïðåäåëÿåìûå ðàâåíñòâàìè Sn0 (ϕ) = Cs3 (ϕ), Cs0 (ϕ) = −Sn(ϕ) è óñëîâèÿìè Cs(0) == 1, Sn(0) = 0.Ôóíêöèè Cs è Sn ÿâëÿþòñÿ ïåðèîäè÷åñêèìè ñ íåêîòîðûì íàèìåíüøèì ïåðèîäîì 2ω , ïðè÷åì ñïðàâåäëèâî èíòåãðàëüíîå ñîîòíîøåíèå2Sn2 (ϕ) + Cs4 (ϕ) = 1. Ñîîòâåòñòâåííî,x4 + 2y 2 = r4(8) ðåçóëüòàòå çàìåíû (7) ïîëó÷èòñÿ ñèñòåìàṙ = Cs3 (ϕ)(X ∗ + X 0 ) − r−1 Sn(ϕ)(Y ∗ + Y 0 ),ϕ̇ = r − 2r−1 Sn(ϕ)(X ∗ + X 0 ) − r−2 Cs(ϕ)(Y ∗ + Y 0 ), ẇ = Aw + W ∗ + W 0 ,(9)ãäå â ïðàâîé ÷àñòè íà ìåñòå ïåðåìåííûõ x, y ñòîÿò rCs(ϕ), −r2 Sn(ϕ)ñîîòâåòñòâåííî.45Ñèñòåìó (9) çàïèøåì â âèäåṙ = R∗ (t, r, ϕ, ε) + r−1 R0 (t, r, ϕ, w, ε), ϕ̇ = r + Φ∗ (t, r, ϕ, ε) + ε2 r−1 b(t, r, ϕ, ε)+(10)+ r−2 Φ0 (t, r, ϕ, w, ε), ẇ = Aw + W ∗ (t, r, ϕ, ε) + W 0 (t, r, ϕ, w, ε),ãäå R∗ = P (t, ϕ)r3 + Q(t, ϕ)εr + O(r4 + εr2 + ε2 ), Φ∗ = O(r2 + ε), W ∗ == O(rN +1 ).Ââåäåì íîâûå ïåðåìåííûå u, v ïî ôîðìóëàìr=√ε(α + u),w = εm v,(11)ãäå α, m ïîëîæèòåëüíûå ÷èñëà, ïîäëåæàùèå äàëüíåéøåìó îïðåäåëåíèþ, |u| < α.
Ïîëó÷èì ñèñòåìó3122 ) + εm− 2 U 0 ,u̇=εU+εuU+O(εu+ε12√√3ϕ̇ = εα + εu + O(ε) + εm− 2 Φ0 , v̇ = Av + O(ε N2+1 −m ) + V 0 ,(12)ãäå U1 = α3 P + αQ, U2 = 3α2 P + Q.Âûïîëíèì â ñèñòåìå (12) ðÿä ïðåîáðàçîâàíèé.Ëåììà 2. Ñóùåñòâóåòu = p(1 +√çàìåíàεg(ϕ) + εg̃(t, ϕ)) +√εf (ϕ) + εf˜(t, ϕ),(13)ïðèâîäÿùàÿ ñèñòåìó (12) ê âèäó1322 ) + εm− 2 P 0 ,ṗ=εL(α)+εM(α)p+O(εp+ε√√3ϕ̇ = εα + εp + O(ε) + εm− 2 Φ0 , v̇ = Av + O(ε N2+1 −m ) + V 0 ,46(14)ãäå L = α3P̄ + αQ̄,.M = 3α2 P̄ + Q̄Äîêàçàòåëüñòâî.
Ïðîäèôôåðåíöèðóåì (13) ïî t, ó÷èòûâàÿ (12) è(14). Ïîëó÷èì ïðè v = 0232εU1 + εuU2 + O εu + ε =√322= εL + εpM + O εp + ε1 + εg(ϕ) + εg̃(t, ϕ) +√ dg∂g̃∂g̃ √ df∂ f˜∂ f˜+ p ε ϕ̇ + pε ϕ̇ + pε + ε ϕ̇ + ε ϕ̇ + ε .dϕ∂ϕ∂tdϕ∂ϕ∂t äàííîì ðàâåíñòâå ïðèðàâíÿåì êîýôôèöèåíòû ïðè ε, εp. Ïîëó÷èì óðàâíåíèÿ∂ f˜dfα+= U1 ,L+dϕ∂t(15)dg∂g̃dfM+α+= U2 −= U3 .dϕ∂tdϕÈñïîëüçóÿ ðàçëîæåíèå (1.1.14) äëÿ ïðàâûõ ÷àñòåé ñèñòåìû, â êà÷åRñòâå ðåøåíèÿ äîñòàòî÷íî âçÿòü ôóíêöèè L = Ū1 , f = α1 Û1 dϕ, f˜ =RRR= Ũ1 dt, M = Ū3 = Ū2 , g = α1 Û1 dϕ, g̃ = Ũ1 dt. Ðàññìîòðèì óðàâíåíèå L(α) = 0, ðàâíîñèëüíîå, ïîñêîëüêó α > 0,óðàâíåíèþα2 P̄ + Q̄ = 0(16)Ïóñòü α∗ êîðåíü óðàâíåíèÿ (16).
Îí ñóùåñòâóåò, åñëèP̄ Q̄ < 0.Ïîëîæèì â ïðåäûäóùèõ ðàññóæäåíèÿõ α = α∗ . Òîãäà M ∗ =47(17)= M (α∗ ) = −2Q 6= 0. Ñèñòåìó (14) ìîæíî çàïèñàòü â âèäå33∗22ṗ = εM p + ε 2 d(t, ϕ) + O εp + ε 2 |p| + ε + εm−1 P 0 ,√ ∗ √33ϕ̇ = εα + εp + εc(t, ϕ) + O ε|p| + ε 2 + εm− 2 Φ0 , v̇ = Av + O ε N2+1 −m + V 0 .Ëåììà 3. Ñóùåñòâóåò(18)çàìåíà ïåðåìåííûõ âèäà3p = q + εF (ψ) + ε 2 F̃ (t, ψ),√ϕ = ψ + εG(ψ) + εG̃(t, ψ).(19)êîòîðàÿ ïåðåâîäèò ñèñòåìó (18) â ñèñòåìó33∗22¯q̇ = εM q + dε 2 + O εq + ε 2 |q| + ε + εm−1 Q0 ,√ ∗ √33ψ̇ = εα + εq + c̄ε + O ε|q| + ε 2 + εm− 2 Ψ0 , N +1 v̇ = Av + O ε 2 −m + V 0 .(20)Äîêàçàòåëüñòâî.
Ïðîäèôôåðåíöèðóåì çàìåíó (19) ïî t. Ïîëó÷èìðàâåíñòâà33εM ∗ q + d(t, ϕ)ε 2 + O(εq 2 + ε 2 |q| + ε2 ) + εm−1 Q0 = q̇+!√33dF √ ∗ √∂ F̃+εεα + εq +O(ε)) + ε 2+Oε + εm− 2,dψ∂t√ ∗ √332εα + εq + c(t, ϕ)ε + O ε|q| + ε + εm− 2 Ψ0 = ψ̇+√ dG √ ∗ √m− 32+ εεα + εq + O ε + ε+dψ!√3∂ G̃+ε+Oε + εm− 2.∂t483Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ ε 2 , ε äëÿ ïåðâîãî è âòîðîãî ðàâåíñòâà ñîîòâåòñòâåííî, ïîëó÷èì ñèñòåìódF ∗ ∂ F̃α += d(t, ψ), d˜ +dψ∂tdG ∗ ∂ G̃α += c(t, ψ), c̃ +dψ∂têîòîðàÿ ðåøàåòñÿ àíàëîãè÷íî ñèñòåìå (15). 3Ïîñëå èçìåíåíèÿ ìàñøòàáà ïåðåìåííîé q è ñäâèãà q = ε 4 s −−√ ¯ ∗ −1εd(M ) , ïîëó÷èì ñèñòåìó 5∗m− 47 04+εS ,s+Oṡ=εMε 5√ ∗3ψ̇ = εα + εβ + O ε 4 + εm− 2 Ψ0 , v̇ = Av + O ε N2+1 −m + V 0 ,ãäå β íåêîòîðàÿ ïîñòîÿííàÿ, ïåðèîä ïî ψ ðàâåí ïåðèîäó ïî ϕ.Íàêîíåö, âûáèðàÿ N è m òàê, ÷òîáû âûïîëíÿëèñü ðàâåíñòâà m− 47 =5 N +14, 2−m=12íàéäåì N = 6, m = 3. ðåçóëüòàòå ïîëó÷èì ñèñòåìó âèäà 5∗ṡ = εM s + O ε 4 , 5√ ∗ψ̇ = εα + εβ + O ε 4 ,√ v̇ = Av + O ε ,(21)êîòîðàÿ óäîâëåòâîðÿåò óñëîâèÿì ëåììû Õåéëà.Òàêèì îáðàçîì äîêàçàíàÒåîðåìà [4].
Ïóñòü âûïîëíÿåòñÿ óñëîâèå (17). Òîãäà ïðè êàæäîì49äîñòàòî÷íî ìàëîì ε > 0 ñèñòåìà (1) èìååò èíâàðèàíòíûé òîðx = ε α + ε D(t, ϕ, ε) Cs(ϕ),21∗y = −ε α + ε 4 D(t, ϕ, ε) Sn(ϕ),12∗141z = ε 4 C(t, ϕ, ε),ãäå D, C äèôôåðåíöèðóåìûå ïî t, ïåðèîäè÷åñêèå ïî t, ϕ è ëèïøèöåâûïî ϕ ôóíêöèè. Ê òîìó æå, ïðè Q > 0 è îòðèöàòåëüíîñòè äåéñòâèòåëüíûõ ÷àñòåé âñåõ ñîáñòâåííûõ ÷èñåë ýòîò òîð àñèìïòîòè÷åñêèóñòîé÷èâ. 2. Óñòîé÷èâîñòü ïîëîæåíèÿ ðàâíîâåñèÿÐàññìîòðèì ñèñòåìó äèôôåðåíöèàëüíûõ óðàâíåíèéẋ = y + X(t, x, y, z, ),ẏ = −x2 sgn x + Y (t, x, y, z), ż = Az + Z(t, x, y, z),(1)ãäå z = (z1 , . . . , zn )T , X , Y , Z íåëèíåéíîñòè, äîñòàòî÷íî ãëàäêèå ïîïåðåìåííûì x, y , z â íåêîòîðîé îêðåñòíîñòè íóëÿ, íåïðåðûâíûå è ïåðèîäè÷åñêèå ïî t ñ ïåðèîäîì 2π . Áóäåì òàêæå ïîëàãàòü, ÷òî ïîðÿäîê ìàëîñòèY ïî ïåðåìåííûì x, y , zi íå íèæå ïÿòîãî, åñëè x ïðèïèñûâàòü âòîðîéïîðÿäîê, y òðåòèé, à zi ÷åòâåðòûé. Âåùåñòâåííûå ÷àñòè ñîáñòâåííûõ÷èñåë ìàòðèöû A îòðèöàòåëüíû.Ïðåäñòàâèì ôóíêöèè X , Y , Z , èñïîëüçóÿ ôîðìóëó Òåéëîðà äëÿ ìíîãèõ ïåðåìåííûõ, â âèäå50X(t, x, y, z) = α1 (t)x2 + α2 (t)xy + α3 (t)y 2 + α4 (t)x3 ++ β1 (t)zx + β2 (t)zy + X ∗ ,Y (t, x, y, z) = a1 (t)xy + a2 (t)y 2 + a3 (t)x3 + a4 (t)x2 y+(2)∗+ b1 (t)zx + b2 (t)zy + Y ,Z(t, x, y, z) = A1 (t)x2 + A2 (t)xy + A3 (t)y 2 + A4 (t)x3 ++ A5 (t)x2 y + B1 (t)zx + B2 (t)zy + Z ∗ ,ãäå β1 (t), β2 (t), b1 (t), b2 (t) âåêòîð-ñòðîêè, Ai (t) âåêòîð-ñòîëáöû,B1 (t), B2 (t) ìàòðèöû,XX ∗42232X = O x + |x y| + |xy | + |y | +|zi zj | + (x + y)|zi | ,XX ∗43232Y = O x + |x y| + |xy | + |y | +|zi zj | + (x + y)|zi | ,XX ∗43232Z = O x + |x y| + |xy | + |y | +|zi zj | + (x + y)|zi | . ñèñòåìå (1) ñäåëàåì çàìåíó ïåðåìåííûõx = ρ2 C(ϕ),y = −ρ3 S(ϕ),z = wρ3 ,(3)ãäå ρ > 0, w-âåêòîð-ôóíêöèÿ, C , S ââåäåííûå ðàíåå ôóíêöèè.
Ïîëó÷èì ñèñòåìó1ρ̇ = X(t, ρ2 C, −ρ3 S, wρ3 )C 2 sgn C−2ρ1233−Y(t,ρC,−ρS,wρ)S,22ρ3ϕ̇ = ρ − 2 X(t, ρ2 C, −ρ3 S, wρ3 )S−2ρ1−Y (t, ρ2 C, −ρ3 S, wρ3 )C,3ρ31 ẇ = Aw − ρ̇w + Z(t, ρ2 C, −ρ3 S, wρ3 ).ρρ351(4)Äåéñòâèòåëüíî, ïîäñòàâëÿÿ â ñèñòåìó (1) çàìåíó (3), ïîëó÷èì ñèñòåìó2ρρ̇C − ρ2 S ϕ̇ = −ρ3 S + X,− 3ρ2 ρ̇S − ρ3 C 2 sgn C ϕ̇ = −ρ4 C 2 sgn C + Y,31 ẇ = Aw − ρ̇w + 3 Z.ρρ(5)Óìíîæèì òåïåðü ïåðâîå óðàâíåíèå äàííîé ñèñòåìû íà ρC 2 sgn C , âòîðîå íà −S .
Ïîëó÷èì óðàâíåíèÿ 2ρ2 ρ̇C 3 sgn C − ρ3 SC 2 sgn C ϕ̇ = −ρ4 SC 2 sgn C + ρC 2 sgn CX, 3ρ2 ρ̇S 2 + ρ3 SC 2 ϕ̇ = ρ4 SC 2 sgn C − SY.Ñêëàäûâàÿ äàííûå óðàâíåíèÿ, ïîëó÷èì ïåðâîå óðàâíåíèå ñèñòåìû (4).Äàëåå óìíîæèì ïåðâîå óðàâíåíèå ñèñòåìû (5) íà 3ρS , âòîðîå íà 2C .Ïîëó÷èì óðàâíåíèÿ 6ρ2 ρ̇CS − 3ρ3 S 2 ϕ̇ = −3ρ4 S 2 + 3ρSX, − 6ρ2 ρ̇SC − 2ρ3 C 3 sgn C ϕ̇ = −2ρ4 C 3 sgn C + 2CY.Ñêëàäûâàÿ äàííûå óðàâíåíèÿ, ïîëó÷èì âòîðîå óðàâíåíèå ñèñòåìû (4).X(t, ρ2 C, −ρ3 S, wρ3 ) = α1 C 2 ρ4 − α2 CSρ5 + (α3 S 2 + α4 C 3 )ρ6 +X5676+ Cβ1 wρ − Sβ2 wρ + O ρ +|ρ wi wj | ,Y (t, ρ2 C, −ρ3 S, wρ3 ) = −a1 CSρ5 + (a2 S 2 + a3 C 3 )ρ6 −− a4 C 2 Sρ7 + Cb1 wρ5 − Sb2 wρ6 +XX876+O ρ +|ρ wi | +|ρ wi wj | ,Z(t, ρ2 C, −ρ3 S, wρ3 ) = A1 C 2 ρ4 − A2 CSρ5 + (A3 S 2 + A4 C 3 )ρ6 −− A5 C 2 Sρ7 + CB1 wρ5 − SB2 wρ6 +XX876+O ρ +|ρ wi | +|ρ wi wj | .52Ïîäñòàâèâ äàííûå ðàâåíñòâà â ñèñòåìó (4), ïîëó÷èì ñèñòåìóãäå1345ρ̇=Pρ+Pρ+Pρ−CSb1 wρ3 +3452X132465+ (C sgn Cβ1 + S b2 )wρ + O ρ +|ρ wi | +2X4+O|ρ wi wj | ,2322ϕ̇=ρ+Φρ+Φρ−Cbwρ+231XX543+O ρ +|ρ wi | +|ρ wi wj | ,ẇ = Aw + A1 C 2 ρ − A2 CSρ2 + (A3 S 2 + A4 C 3 )ρ3 −3− A5 C 2 Sρ4 + (CB1 − 3P3 )wρ2 − CSwb1 wρ2 −2− (3P4 + SB2 ) wρ3 +XX43 + O ρ5 +|ρ wi | +|ρ wi wj | ,(6)a1 CS 2α1 4,P3 = C sgn C +22α2a2a3P4 = − SC 3 sgn C − S 3 − C 3 S,222α4 5a4α3 2 2P5 = S C sgn C + C sgn C + C 2 S 2 ,2223Φ2 = − α1 C 2 S + a1 C 2 S,23Φ3 = α2 CS 2 − a2 CS 2 − a3 C 4 .2(7)w = v + H1 (t, ϕ)ρ + H2 (t, ϕ)ρ2 + H3 (t, ϕ)ρ3 + H4 (t, ϕ)ρ4 ,(8)Ëåììà 1.
Ñóùåñòâóåòçàìåíà âèäàêîòîðàÿ ïåðåâîäèò ñèñòåìó (6) â ñèñòåìó53X30 40 563ρ̇ = P3 ρ + P4 ρ + P5 ρ + O ρ +|ρ vi | ,X20 342ϕ̇ = ρ + Φ2 ρ + Φ3 ρ + O ρ +|ρ vi | ,X2 v̇ = Av + O ρ5 +|ρ vi | ,ãäå1P40 = P4 − CSb1 H1 ,211P50 = P5 + (C 3 sgn Cβ1 + S 2 b2 )H1 − CSb1 H2 ,22(9)(10)Φ03 = Φ3 − C 2 b1 H1 .Äîêàçàòåëüñòâî. Ïðîäèôôåðåíöèðóåì çàìåíó (8) ïî t. Ïîëó÷èìðàâåíñòâîX ∂H1 ∂H1 v̇ ++ρ + Φ2 ρ2 + Φ03 ρ3 + O ρ4 + ρ2|vi |ρ+∂t∂ϕX∂H2 ∂H2 232+ρ + Φ2 ρ + O ρ +|ρ vi |+ρ2 +∂t∂ϕ∂H∂H∂H3 ∂H344ρ + O ρ2ρ3 ++++O (ρ) ρ4 +∂t∂ϕ∂t∂ϕ+ H1 + 2H2 ρ + 3H3 ρ2 + 4H4 ρ3 P3 ρ3 + P40 ρ4 +X 5233+ H1 + 2H2 ρ + 3H3 ρ + 4H4 ρ O ρ + ρ|vi |== A(v + H1 ρ + H2 ρ2 + H3 ρ3 + H4 ρ4 ) + A1 C 2 ρ − A2 CSρ2 ++ (A3 S 2 + A4 C 3 + (CB1 − 3P3 )H1 )ρ3 ++ −A5 C 2 S + (CB1 − 3P3 )H2 − (SB2 + 3P4 )H1 ρ4 +X 3452|vi | .+ CSH1 b1 H1 ρ + O ρ + ρ2Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ ρ, ρ2 , ρ3 , ρ4 , ïîëó÷èì ñèñòåìûäëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ çàìåíû (8).54∂H1= AH1 + A1 C 2 ,∂t∂H1 ∂H2+= AH2 − A2 CS,∂ϕ∂t∂H1∂H2 ∂H3Φ2 +++ H1 P3 = AH3 + A3 S 2 + A4 C 3 +∂ϕ∂ϕ∂t(11)+ (CB1 − 3P3 )H1 ,∂H1 0 ∂H2∂H3 ∂H4Φ3 +Φ2 +++ P40 H1 + 2P3 H2 =∂ϕ∂ϕ∂ϕ∂t= AH4 − A5 C 2 S + (CB1 − 3P3 )H2 − (SB2 + 3P4 )H1 +3+ CSH1 b1 H1 .2Äëÿ ïåðâîé ñèñòåìû èç ôîðìóë (11) ïîëó÷àåì åäèíñòâåííîå ðåøåíèåH1 = E − e2πA −1C 2 (ϕ)Zte(t−s)A A1 (s)ds.(12)t−2πÎñòàëüíûå ñèñòåìû èç ôîðìóë (11) òàêæå åñòü ëèíåéíûå íåîäíîðîäíûåñèñòåìû ñ ïåðèîäè÷åñêîé ïðàâîé ÷àñòüþ ïî t, ϕ, ãäå ϕ ïàðàìåòð.
Ñëåäîâàòåëüíî, äëÿ êàæäîé òàêîé ñèñòåìû ñóùåñòâóåò åäèíñòâåííîå ðåøåíèå, ïåðèîäè÷åñêîå ïî t ñ ïåðèîäîì 2π è, êàê íåòðóäíî çàìåòèòü (ïîàíàëîãèè ñ ôîðìóëîé (12)), ïåðèîäè÷åñêîå ïî ϕ ñ ïåðèîäîì 2ω . Ãëàäêîñòü ôóíêöèé ïî ϕ: H1 (t, ϕ) 4, H2 (t, ϕ) 3, H3 (t, ϕ) 2, H4 (t, ϕ) 1. Ñèñòåìû (11) ðåøàþòñÿ ðåêóððåíòíî. Ëåììà 2. Ñóùåñòâóåòçàìåíà âèäàρ = r + h2 (ϕ)r2 + h3 (t, ϕ)r3 + h4 (t, ϕ)r4 + h5 (t, ϕ)r5 ,êîòîðàÿ ïåðåâîäèò ñèñòåìó (9) â ñèñòåìó55(13)X563ṙ = gr + O r +|r vi | , ϕ̇ = r + (Φ2 + h2 )r2 + (Φ03 + 2h2 Φ2 + h3 )r3 +X42+O r +|r vi | ,X2 v̇ = Av + O r5 +|r v | .(14)iÄîêàçàòåëüñòâî.