Диссертация (1150437), страница 3
Текст из файла (страница 3)
Íî ýòî íåâîçìîæíî, òàê êàê g + M r(t1 ) < 0.Òàêèì îáðàçîì, ìàêñèìàëüíûé èíòåðâàë ñóùåñòâîâàíèÿ ðåøåíèÿ ñîâïàäàåò ñ èíòåðâàëîì [t0 , +∞) è íåðàâåíñòâî (30) ìîæíî çàïèñàòü â âèäågṙ ≤ r5 .2(31)Èç äàííîãî íåðàâåíñòâà ïîëó÷èì íåðàâåíñòâî1r(t, t0 ) ≤ q4−2g(t − t0 ) +,1r0 4îòêóäà ñëåäóåò, ÷òî íóëåâîå ðåøåíèå óðàâíåíèÿ (29) àñèìïòîòè÷åñêèóñòîé÷èâî, ò.å. ∀ε > 0∃δ > 0 : r0 < δ ⇒ r(t) < ε, t ≥ t0 è r(t) −−−→ 0.t→∞Äëÿ äîêàçàòåëüñòâà àñèìïòîòè÷åñêîé óñòîé÷èâîñòè íóëåâîãî ðåøåíèÿ óðàâíåíèÿ (1) äîñòàòî÷íî âîñïîëüçîâàòüñÿ îöåíêîépppx2 + y 2 = ρ4 C 2 + ρ6 S 2 = r2 C 2 + O(r2 ) ≤ M1 r2 ,(32)ãäå M1 ïîëîæèòåëüíàÿ êîíñòàíòà.Ïóñòü g > 0. Äîêàæåì íåóñòîé÷èâîñòü íóëåâîãî ðåøåíèÿ óðàâíåíèÿ23(29).
Èç ðàâåíñòâà (29) ïîëó÷èì íåðàâåíñòâîṙ ≥ (g − M r)r5 ,ãäå r <g2M .(33)Äàííîå íåðàâåíñòâî ñïðàâåäëèâî, ïî êðàéíåé ìåðå, â íåêîòî-ðîé ïîëóîêðåñòíîñòè t0 . Èç íåðàâåíñòâà (33) ñëåäóåò, ÷òî ðåøåíèå r(t, t0 )óðàâíåíèÿ (29) ñòðîãî ìîíîòîííî âîçðàñòàåò â äàííîé ïîëóîêðåñòíîñòèt0 è âûïîëíÿåòñÿ íåðàâåíñòâîgṙ ≥ r5 .2(34)Äëÿ ðåøåíèÿ r(t, t0 ) âûïîëíÿåòñÿ îäíà èç âîçìîæíîñòåé: ëèáî ñóùåñòâóåò òàêîå t = T , ÷òî âûïîëíÿåòñÿ ðàâåíñòâî r(T ) =åòñÿ íåðàâåíñòâî r <g2Mg2M ,ëèáî âûïîëíÿ-ïðè âñåõ t è, ñëåäîâàòåëüíî, ìàêñèìàëüíûìèíòåðâàëîì ñóùåñòâîâàíèÿ ðåøåíèÿ ÿâëÿåòñÿ èíòåðâàë [t0 , +∞).
Òîãäàèç íåðàâåíñòâà (34) ïîëó÷àåì íåðàâåíñòâî1r(t, t0 ) ≥ q4−2g(t − t0 ) +,1r0 4îòêóäà âûòåêàåò íåóñòîé÷èâîñòü íóëåâîãî ðåøåíèÿ óðàâíåíèÿ (29). Äëÿòîãî, ÷òîáû ïîêàçàòü íåóñòîé÷èâîñòü íóëåâîãî ðåøåíèÿ óðàâíåíèÿ (1)äîñòàòî÷íî âîñïîëüçîâàòüñÿ íåóñòîé÷èâîñòüþ íóëåâîãî ðåøåíèÿ óðàâíåíèÿ (29) è íåðàâåíñòâîìppp3224262x + y = ρ C + ρ S > ρ C 2 + S 2 > Kr3 ,ãäå K ïîëîæèòåëüíàÿ êîíñòàíòà.
24 2. Óñòîé÷èâîñòü ïîëîæåíèÿ ðàâíîâåñèÿ àâòîíîìíîãîóðàâíåíèÿÐàññìîòðèì àâòîíîìíûé âàðèàíò óðàâíåíèÿ (1.1). Äàëåå â ýêâèâàëåíòíîé äàííîìó óðàâíåíèþ ñèñòåìå ẋ = y,(2) ẏ = −x2 sgn x + Y (x, y),ãäå Y (x, y) = a1 xy + a2 y 2 + a3 x3 + a4 x2 y + Y ∗ , ai êîíñòàíòû, à ôóíêöèÿY ∗ èìååò ïîðÿäîê ìàëîñòè â óêàçàííîì âûøå ñìûñëå íå íèæå âîñüìîãî,ïåðåéäåì ñ ïîìîùüþ çàìåíû (1.9) ê ñèñòåìå â ïîëÿðíûõ êîîðäèíàòàõNXiN +1P(ϕ)ρ+Oρ,ρ̇=ii=3N−1XiNΦ(ϕ)ρ+Oρ,ϕ̇=ρ+i(3)i=2ãäå ôóíêöèè P3 (ϕ), P4 (ϕ), P5 (ϕ), Φ2 (ϕ), Φ3 (ϕ) èìåþò âèä (13).Ëåììà 1.
Ñóùåñòâóåòçàìåíà ïåðåìåííûõ âèäàρ=r+N−1Xhi (ϕ)ri ,(4)i=2êîòîðàÿ ïåðåâîäèò ñèñòåìó (3) â ñèñòåìóNXṙ =gi ri + O rN +1 ,i=5N−1XiNϕ̇=r+Ψ(ϕ)r+Or,ii=2ãäå gi êîíñòàíòû, à ôóíêöèè Ψ2(ϕ), Ψ3(ϕ) èìåþò âèä (17).25(5)Äîêàçàòåëüñòâî. Ïðîäèôôåðåíöèðóåì çàìåíó (4) ïî t. Ïîëó÷èìðàâåíñòâîNXi=5gi ri 1 +N−1X!jhj rj−1+N−1Xj=2i=2dhidϕr+N−1X!Ψj rjri+j=2+ O rN +1 = P3 r3 + (3h2 P3 + P4 )r4 + 3P3 h3 + 3P3 h2 2 +5+ 4h2 P4 + P5 )r +NX(Pi + Ri )ri + O rN +1 ,i=6ãäå ôóíêöèÿ Ri íå çàâèñèò îò êîýôôèöèåíòîâ çàìåíû (4) ñ íîìåðàìèáîëüøèìè ÷åì i − 2. Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ r3 , r4 ,r5 ,. .
. ,rN , ïîëó÷èì ñèñòåìó óðàâíåíèédh2= P3 ,dϕdh3dh2=3hP+P−Ψ2 ,234dϕdϕdh4= 3P3 h3 + 3P3 h2 2 +dϕdh3dh2Ψ−Ψ2 − g5 ,+4hP+P−3245dϕdϕ...dh N −1 = PN + GN − gN ,dϕ(6)ãäå ôóíêöèÿ GN íå çàâèñèò îò êîýôôèöèåíòîâ çàìåíû (4) ñ íîìåðàìèáîëüøèìè ÷åì N − 2.Èç ïåðâîãî óðàâíåíèÿ, ó÷èòûâàÿ ôîðìóëû (13) è ñâîéñòâî 4, ïîëó÷àåì ïåðèîäè÷åñêóþ ôóíêöèþ h2 =a12Rïîëó÷àåì ïåðèîäè÷åñêóþ ôóíêöèþ h3 =RCS 2 dϕ.
Èç âòîðîãî óðàâíåíèÿ(P4 + G4 )dϕ, ãäå G4 = 3h2 P3 −2¯− dhdϕ Ψ2 , òàê êàê P4 + Ḡ4 = 0, ÷òî ñëåäóåò èç ôîðìóëû (1.23). Èç òðåòüåãî26óðàâíåíèÿ ïîëó÷àåì ïåðèîäè÷åñêóþ ôóíêöèþ h4 =Rãäå G5 = 3P3 h3 + 3P3 h2 2 + 4h2 P4 −g5 = P¯5 + Ḡ5 è ò.ä.dh2dϕ Ψ3−dh3dϕ Ψ2 ,(P5 + G5 − g5 )dϕ,Íàêîíåö, èç N − 2 óðàâíåíèÿ ïîëó÷àåì ïåðèîäè÷åñêóþ ôóíêöèþ hN −1 =R(PN + GN − gN )dϕ, ãäå gN = P¯N + G¯N . Ïóñòü â ñèñòåìå (5) N ïåðâûé íîìåð, êîãäà gN 6= 0.Åñëè gN < 0, òî íóëåâîå ðåøåíèå àâòîíîìíîãî óðàâíåíèÿ (1.1) àñèìïòîòè÷åñêè óñòîé÷èâî, åñëè gN > 0, òî îíî íåóñòîé÷èâî.Òåîðåìà.Äîêàçàòåëüñòâî àíàëîãè÷íî äîêàçàòåëüñòâó òåîðåìû § 1. 3. Áèôóðêàöèÿ ðîæäåíèÿ èíâàðèàíòíîãî òîðàÐàññìîòðèì óðàâíåíèåẍ + x2 sgn x = Y (t, x, ẋ, ε).(1)Ôóíêöèÿ Y (t, x, ẋ, ε) äîñòàòî÷íî ãëàäêàÿ íåëèíåéíîñòü ïî ïåðåìåííûìx, ẋ è ìàëîìó ïàðàìåòðó ε, |x| < x∗ , |ẋ| < x∗ , 0 < ε < ε∗ , è âûïîëíÿåòñÿðàâåíñòâî Y (t, 0, 0, ε) = 0. Ïîëîæèì òàêæå, ÷òî ôóíêöèÿ Y íåïðåðûâíà,2π - ïåðèîäè÷íà ïî t è åå ïîðÿäîê ìàëîñòè ïî ïåðåìåííûì x, ẋ, ε íåíèæå ïÿòîãî, åñëè x ïðèïèñûâàòü âòîðîé ïîðÿäîê, ẋ òðåòèé, à ε ÷åòâåðòûé.Ñ ïîìîùüþ çàìåíû y = ẋ â óðàâíåíèè (1) ïåðåéäåì ê ñèñòåìå ẋ = y,(2) ẏ = −x2 sgn x + Y (t, x, y, ε),27ãäåY (t, x, y, ε) = a1 (t)xy + a2 (t)y 2 + a3 (t)x3 + a4 (t)x2 y + b1 (t)εx+(3)∗+ b2 (t)εy + Y ,à ïîðÿäîê ìàëîñòè Y ∗ íå íèæå âîñüìîãî â óêàçàííîì âûøå ñìûñëå. ñèñòåìå (2) ñäåëàåì çàìåíó ïåðåìåííûõx = ρ2 C(ϕ),y = −ρ3 S(ϕ),(4)â êîòîðîé ïîëîæèì ρ > 0.
Ïîëó÷èì ñèñòåìóS23 ρ̇ = − 2 Y (t, ρ C, −ρ S, ε),2ρC ϕ̇ = ρ − 3 Y (t, ρ2 C, −ρ3 S, ε),ρ(5)ãäåY (t, ρ2 C, −ρ3 S, ε) = −a1 (t)CSρ5 + a2 (t)S 2 ρ6 + a3 (t)C 3 ρ6 −− a4 (t)C 2 Sρ7 + b1 (t)Cερ2 − b2 (t)Sερ3 + O(ρ8 + ε2 ρ2 + ερ4 ).Çàïèøåì ñèñòåìó (5) â âèäåρ̇ = P3 ρ3 + P4 ρ4 + P5 ρ5 + Q1 ε + Q2 ερ+622 + O(ρ + ερ + ε ),εϕ̇ = ρ + Φ2 ρ2 + Φ3 ρ3 + Φ4 ρ4 + Θ1 + Θ2 ε+ρ2ε + O ρ5 + ερ +,ρãäåa1 CS 2a2 S 3 + a3 C 3 Sa4 C 2 S 2P3 =, P4 = −, P5 =,222b1b2Q1 = − CS, Q2 = S 2 , Φ2 = a1 C 2 S,22Φ3 = −a3 C 4 − a2 CS 2 ,Θ1 = −b1 C 2 ,Φ4 = a4 C 3 S,Θ2 = b2 CS.28(6)(7)Âûïîëíèì â ñèñòåìå (6) çàìåíó (1.15). Ïîëó÷èì ñèñòåìódh25ṙ = gr + Q1 ε + Q2 −Θ1 − 2h2 Q1 εr+dϕ + O(r6 + εr2 + ε2 ),εϕ̇ = r + Ψ2 r2 + Ψ3 r3 + Ψ4 r4 + Θ1 + (Θ2 − Θ1 h2 )ε+r2 + O(r5 + εr + ε ),r(9)ãäåg = const ,Ψ2 = Φ2 + h2 ,Ψ3 = h3 + 2h2 Φ2 + Φ3 ,(10)2Ψ4 = Φ4 + 3h2 Φ3 + h2 Φ2 + 2h3 Φ2 + h4 .Äåéñòâèòåëüíî, ïðîäèôôåðåíöèðóåì çàìåíó (1.15) ïî t.
Ïîëó÷èìðàâåíñòâî1 + 2h2 r + O(r2 ) gr5 + Q1 ε+ dh2dh2+ Q2 −Θ1 − 2h2 Q1 εr +r + Ψ2 r 2 + Ψ3 r 3 +dϕdϕ2εεr2++ Θ1 + O r4 + ε +rr∂h3 ∂h3 ε++r + Ψ2 r 2 + O r 3 +r3+∂t∂ϕr∂h4 ∂h4ε+r + O r2 +r4++∂t∂ϕr∂h5 ∂h5 ε 5++O r+r + O r6 + εr2 + ε2 =∂t∂ϕr= P3 r3 + (3h2 P3 + P4 )r4 + (3P3 h3 + 3P3 h2 2 + 4h2 P4 + P5 )r5 ++ Q1 ε + Q2 εr + O(r6 + εr2 + ε2 ),èç êîòîðîãî ñëåäóåò, ÷òî ñèñòåìà (9) óäîâëåòâîðÿåò çàìåíå (1.15).29 ñèñòåìå (9) âûïîëíèì çàìåíó ïåðåìåííûõr=√4ε(α + z),(11)ãäå |z| < α. Ïîëó÷èì ñèñòåìó 53244ż = Q1 ε + Z1 ε + Z2 εz + O ε + εz ,√√√√344 + E ε + 4 εz + Eϕ̇=εα+Eε+Eεεz+2354 5√ 3 + O ε 4 + ε 4 |z| + εz 2 ,ãäådh2Z1 = gα + Q2 −Θ1 − 2h2 Q1 α,dϕdh2Θ1 − 2h2 Q1 ,Z2 = 5α4 g + Q2 −dϕΘ1E2 = α2 Ψ2 , E3 = α3 Ψ3 +,α5(12)4E4 = α Ψ4 + Θ2 − Θ1 h2 ,(13)(14)E5 = 2αΨ2 .Äåéñòâèòåëüíî, ïîäñòàâëÿÿ ôîðìóëó (11) â ñèñòåìó (9), ïîëó÷èì ñèñòåìó√54εż = Q1 ε + gε 4 α5 + 5α4 z + O z 2 + 35dh24+ Q2 −Θ1 − 2h2 Q1 ε (α + z) + O ε 2 ,dϕ√√√2244ϕ̇=εα+εz+Ψεα+2αz+O(z)+23344+Ψεα+O(|z|)+εΨα+O(|z|)+34 5314 + Θ1 ε+ O(|z|) + (Θ2 − Θ1 h2 )ε + O ε 4 .αÂûïîëíèâ ýëåìåíòàðíûå ïðåîáðàçîâàíèÿ, ïîëó÷èì ñèñòåìó (12).Ëåììà 2.
Ñóùåñòâóåòçàìåíà ïåðåìåííûõ âèäà√√3z = u + εF̂0 (ϕ) + ε 4 F̃0 (t, ϕ) + εuF1 (ϕ)+√√+ εu2 F2 (ϕ) + εu3 F3 (ϕ),30(15)ïåðåâîäÿùàÿ ñèñòåìó (12) â ñèñòåìó 532444u̇ = U1 ε + U2 εu + O ε + εu + ε u ,√√344 + (E + F̃ + E F̂ )ε+ϕ̇=εα+Eε+(E+F̂)ε230405 0√√√35 + 4 εu + E5 εu + O ε 4 + ε 4 |u| + εu2 ,ãäå(16)dF̂0 ∂ F̃0−α,dϕ∂ϕdF1dF̂0 ∂ F̃0−α − E2.U2 = Z2 − E5dϕ∂ϕdϕU1 = Z1 − E2(17)Äîêàçàòåëüñòâî. Ïðîäèôôåðåíöèðóåì çàìåíó (15) ïî t.
Ïîëó÷èìðàâåíñòâî!dF̂0 ∂ F̃0−α ε+dϕ∂ϕ! 53dF̂0 ∂ F̃0dF12444+ Z2 − E 5−− E2εu + O ε + εu + ε u +dϕ∂ϕdϕ 3 √ √ dF̂0 √√√√44+ εα + E2 ε + εu + E5 εu + O ε 4 + εu2 +dϕ!√√3∂ F̃0 ∂ F̃0 √4+εα + 4 εu + O( ε) ++ ε4∂t∂ϕ 5 √√√√ dF1 √44+ εuεα + E2 ε + εu + O ε 4 + ε|u| +dϕ√ dF2 √√√ 4+ εu2εα + 4 εu + O( ε) +dϕ√ dF3 √√√+ εu3( 4 εα + 4 εu + O( ε)).dϕ35Q1 ε 4 + Z1 ε + Z2 εu + ε 4 + εu2 =Z1 − E23333Ïðèðàâíèâàÿ êîýôôèöèåíòû ïðè ñòåïåíÿõ ε 4 , ε 4 u, ε 4 u2 , ε 4 u3 , ïîëó÷èì31ñèñòåìó óðàâíåíèé∂ F̃0dF̂0α+= Q1 ,dϕ∂tdFdF̂ 1α = − 0,dϕdϕ(18)dFdF12α=−,dϕdϕdFdF 3α = − 2.dϕdϕÏðåäñòàâèì ïðàâóþ ÷àñòü ïåðâîãî óðàâíåíèÿ, èñïîëüçóÿ ôîðìóëû(8), â âèäå (1.1.14).
Ïîëó÷èì óðàâíåíèådF̂0b̄1∂ F̃0b1 − b̄1α+= − CS −CSdϕ∂t22 êà÷åñòâå ðåøåíèÿ äàííîãî óðàâíåíèÿ âîçüìåì ôóíêöèèb̄1F̂0 = −2αZb̄1 2CSdϕ =C ,4αZF̃0 = −CSb1 − b̄1dt.2(19)Äëÿ îñòàëüíûõ óðàâíåíèé ñèñòåìû ïîëó÷èì ôóíêöèèF1 = −b̄1 2C ,4α2F2 =b̄1 2C ,4α3F3 = −b̄1 2C .4α4(20)Ëåììà 2 äîêàçàíà.Ëåììà 3. Ñóùåñòâóåòçàìåíà ïåðåìåííûõ âèäà33u = v + ε 4 Ĥ(ϕ) + εH̃(t, ϕ) + ε 4 v ĥ(ϕ) + εv h̃(t, ϕ),(21)ïðèâîäÿùàÿ ñèñòåìó (16) ê ñèñòåìå 532444v̇ = L(α)ε + M (α)εv + O ε + εv + ε v ,√√344 + (E + F̃ + Ĥ)ε+ϕ̇=εα+Eε+(E+F̂)ε23040√5 + O ε 4 + 4 ε|v| ,32(22)ãäå L(α), M (α) êîíñòàíòû.Äîêàçàòåëüñòâî.