Диссертация (1149211), страница 13
Текст из файла (страница 13)
SaintPetersburg, Russia. – 2011.47. + Popov S. A., Reitmann V. Frequency domain conditions for finitedimensional projectors and determining observations for the set ofamenable solutions // Discrete and Continuous Dynamical Systems. –2014. – Vol. 34, № 1. – Pp. 249–267.48. Popov S. A., Reitmann V. Frequency domain conditions for the existenceof finite-dimensional projectors and determining observations of attractors// Differential Equations and Control Processes. – 2013. – № 1. – Pp. 59–79.49. Popov S., Reitmann V., Skopinov S.
Boundedness and finite-timestability for multivalued doubly-nonlinear evolution systems generatedby a microwave heating problem // Abstracts of “The 8th International111Conference on Differential and Functional Differential Equations”. – 2017.– Moscow, Russia. – Pp. 142–143.50. Robinson J.
C. Inertial manifolds and the cone condition // Dyn. Syst.Appl. – 1993. – Vol. 2. – Pp. 311 – 330.51. Robinson J. C. Infinite-dimensional Dynamical Systems: an Introductionto Dissipative Parabolic PDEs and the Theory of Global Attractors. –Cambridge, Cambridge University Press, 2001. – 480 p.52. Robinson J. C. Taken’s embedding theorem for infinite-dimensionaldynamical systems // J.
Nonlinearity. – 2005. – Vol. 18. – Pp. 2135 – 2143.53. Sauer T.,Yorke J. A. and Casdagli M. Embedology // J. Stat. Phys. –1991. – Vol. 65. – Pp. 579-616.54. Sell G. R., You Y. Dynamics of Evolutionary Equations. – New York,Springer, 1990. – 672 p.55. Smith R. A. Convergence theorems for periodic retarded functionaldifferential equations // Proc. London Math.
Soc. – 1990. – Vol. 60, № 3. –Pp. 581–608.56. Stein E. M. Singular Integrals and Differentiability Properties of Functions.– Princeton, New Jersey, Princeton University Press, 1970. – 304 p.57. Takens F. Detecting strange attractors in turbulence // Lecture Notes inMathematics. Springer-Verlag. – 1981. – Vol. 898. – Pp. 366–381.58.
Temam R. Infinite-dimensional Dynamical Systems in Mechanics andPhysics. – New York, Springer-Verlag, 2nd edition, 1997. – 650 p.11259. Webb G. F. A bifurcation problem for a nonlinear hyperbolic partialdifferential equation // SIAM J. Math. Anal. – 1979. – Vol.
10, № 5. –Pp. 922-932.60. Wloka J. Partial Differential Equations. – Cambridge, CambridgeUniversity Press, 1987. – 518 p.61. Yin H.-M. Global solutions of Maxwell’s equations in an electromagneticfield with the temperature-dependent electrical inductivity // EuropeanJournal of Appl. Math. – 1994. – Vol. 5. – Pp. 57-64.62. Yin H.-M. On Maxwell’s equations in an electromagnetic field with thetemperature effect // SIAM J. Math.
Anal. – 1998. – Vol. 29. – Pp. 637651..