Диссертация (1145986), страница 33
Текст из файла (страница 33)
Communication between tandem cAMP binding domains in the regulatorysubunit of protein kinase A-Ialpha as revealed by domain-silencing mutations / E. T. McNicholl, R.Das, S. SilDas et al. // J. Biol. Chem. 2010. V. 285, N 20. P. 15523–15537.54. Berman, H. M. The cAMP binding domain: an ancient signaling module / H. M. Berman,L. F. Ten Eyck, D. S. Goodsell et al. // P. Natl. Acad. Sci. USA. 2005.
V. 102, N 1. P. 45–50.55. Bubis, J. Correlation of photolabeling with occupancy of cAMP binding sites in the regulatorysubunit of cAMP-dependent protein kinase I / J. Bubis, S. S. Taylor // Biochemistry-US. 1987. V.26.P. 3478–3486.13756. Das, R. Dynamically driven ligand selectivity in cyclic nucleotide binding domains / R.
Das,S. Chowdhury, M. T. Mazhab-Jafari et al. // J. Biol. Chem. 2009. V. 284, N 35. P. 23682–23696.57. Taylor, S. S. Dynamics of signaling by PKA / S. S. Taylor, C. Kim, D. Vigil et al. // Biochim.Biophys. Acta. 2005. V. 1754, N 1–2. P. 25–37.58. Abu-Abed, M. Definition of an electrostatic relay switch critical for the cAMP-dependentactivation of protein kinase A as revealed by the D170A mutant of RIalpha / M. Abu-Abed, R. Das,L. Wang et al. // Proteins. 2007. V.
69. P. 112–124.59. Kim, S. 6-Benzylaminopurine stimulates melanogenesis via cAMP-independent activation ofprotein kinase A / S. Kim, J. Lee, E. Jung et al. // Arch. Dermatol. Res. 2009. V. 301, N 3. P. 253–258.60. Corbin, J. D. Studies of cGMP analog specificity and function of the two intrasubunit bindingsites of cGMP-dependent protein kinase / J. D. Corbin, D. Ogreid, J. P. Miller et al.
// J. Biol. Chem.1986. V. 261, N 3. P. 1208–1214.61. Ogreid, D. Comparison of the two classes of binding sites (A and B) of type II cyclic-AMPdependent protein kinases by using cyclic nucleotide analogs / D. Ogreid, R. Ekanger, R. H. Suva et al.// Eur. J. Biochem. 1989. V. 181. P. 19–31.62. Ogreid, D. Activation of protein kinase isozymes by cyclic nucleotide analogs used singly or incombination.
Principles for optimizing the isozyme specificity of analog combinations / D. Ogreid,R. Ekanger, R. H. Suva et al. // Eur. J. Biochem. 1985. V. 150, N 1. P. 219–227.63. Saldanha, S. A. Assay principle for modulators of protein-protein interactions and itsapplication to non-ATP-competitive ligands targeting protein kinase A / S. A.
Saldanha, G. Kaler,H. B. Cottam et al.// Anal. Chem. 2006. V. 78, N 24. P. 8265–8272.64. Dostmann, W. R. G. Identifying the molecular switches that determine whether (Rp)-cAMPSfunctions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I /W. R. G. Dostmann, S. S. Taylor // Biochemistry-US. 1991. V. 30. P. 8710–8716.65. Anand, G.
S. Cyclic AMP- and (Rp)-cAMPS-induced conformational changes in a complex ofthe catalytic and regulatory (RIα) subunits of cyclic AMP-dependent protein kinase / G. S. Anand,S. Krishnamurthy, T. Bishnoi et al. // Mol. Cell. Proteomics. 2010. V 9, N 10. P. 2225–2237.66. Rehmann, H. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchangefactor EPAC / H.
Rehmann, F. Schwede, S. O. Doskeland et al. // J. Biol. Chem. 2003. V. 278, N 40.P. 38548–38556.67. Huang, L. J.-s. Dissecting cAMP binding domain A in the RIa subunit of cAMP-dependentprotein kinase / L. J.-s. Huang, S. S. Taylor // J. Biol. Chem. 1998. V. 273, N 41. P. 26739–26746.68. Ringheim, G. E. Dissecting the domain structure of the regulatory subunit of cAMP-dependentprotein kinase I and elucidating the role of MgATP / G. E. Ringheim, S. S. Taylor // J. Biol. Chem.1990.
V. 265, N 9. P. 4800–4808.13869. Herberg, F. W. Active site mutations define the pathway for the cooperative activation ofcAMP-dependent protein kinase / F. W. Herberg, S. S. Taylor, W. R. G. Dostmann // Biochemistry-US.1996. V. 35. P. 2934–2942.70. Cheng, C. Y. Sensing domain dynamics in PKA-Ialpha complexes by solution X-Ray scattering/ C. Y. Cheng, J.
Yang, S. S. Taylor et al. // J. Biol. Chem. 2009. V. 284, N 51.P. 35916–35925.71. Zhang, P. Structure and allostery of the PKA RIIβ tetrameric holoenzyme / P. Zhang,E. V. Smith-Nguyen, M. M. Keshwani1 et al. // Science. 2012. V. 335, N 6069. P. 712–716.72. Dao, K. K. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMPaffinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition /K.
K. Dao, K. Teigen, R. Kopperud et al. // J. Biol. Chem. 2006.- V. 281, N 30. P. 21500–21511.73. Moll, D. Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A/ D. Moll, S. Schweinsberg, C. Hammann et al. // Biol. Chem. 2007. V. 388. P. 163–172.74.
Ringheim, G. E. Effects of cAMP-binding site mutations on intradomain cross-communicationin the regulatory subunit of cAMP-dependent protein kinase I / G. E. Ringheim, S. S. Taylor //J Biol. Chem. 1990. V. 265, N 32. P. 19472–19478.75. Yang, J. Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204in the PC1 Loop / J. Yang, S. M. Garrod, M.
S. Deal et al. // J. Mol. Biol. 2005. V. 346. P. 191–201.76. Gibson, R. M. Dissecting the cooperative reassociation of the regulatory and catalytic subunitsof cAMP-dependent protein kinase. Role of Trp-196 in the catalytic subunit / R. M. Gibson,S. S.
Taylor // J. Biol. Chem. 1997. V. 272, N 51. P. 31998–32005.77. Heller, W. T. C Subunits binding to the protein kinase A RIα dimer induce a largeconformational change / W. T. Heller, D. Vigil, S. Brown et al. // J. Biol. Chem. 2004. V. 279, N 18.P. 19084–19090.78. Vigil, D. Differential effects of substrate on type I and type II PKA holoenzyme dissociation /D. Vigil, D. K. Blumenthal, S. Brown et al. // Biochemistry-US. 2004. V. 43. P. 5629–5636.79. Herberg, F. W. Crosstalk between domains in the regulatory subunit of cAMP-dependentprotein kinase: influence of amino terminus on cAMP binding and holoenzyme formation / F.
W. Herberg, W. R. G. Dostmann, M. Zorn et al. // Biochemistry-US. 1994. V. 33. P. 7485–7494.80. Quantum 3.3.0. Moscow: Quantum Pharmaceuticals, 2007.81. Frisch, M. J. Gaussian 03, Revision B.05. / M. J. Frisch, G. W. Trucks, H. B. Schlegel et al.Pittsburgh PA: Gaussian Inc., 2003.82. Roothan, C.
C. J. New developments in molecular orbital theory / C. C. J. Roothan // Rev.Mod. Phys. 1951. V. 23. P. 69–83.83. Hehre, W. J. Self-consistent molecular orbital methods. XII. Further extensions of gaussiantype basis sets for use in molecular orbital studies of organic molecules / W. J. Hehre, R. Ditchfield,139J. A. Pople // J. Chem. Phys. 1972. V. 56. P. 2257–2261.84.
Francl, M. M. Self-consistent molecular orbital methods. XXIII. A polarization-type basis setfor second-row element / M. M. Francl, W. J. Petro, W. J. Hehre et al. // J. Chem. Phys. 1982. V. 77.P. 3654–3665.85. Hariharan, P. C. The influence of polarization functions on molecular orbital hydrogenationenergies / P. C. Hariharan, J. A.
Pople // Theor. Chim. Acta. 1973. V. 28. P. 213–222.86. Clark, T. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+Gset for first-row elements, Li-F / T. Clark, J. Chandrasechar, G. W. Spitznagel et al. // J. Comput. Chem.1983. V. 4. P. 294–301.87. Phillips, J. C. Scalable molecular dynamic with NAMD / J. C. Phillips, R. Braun, W. Wanget al. // J.
Comput. Chem. 2005. V. 26. P. 1781–1802.88. Jorgensen, W. L. Comparison of simple potential functions for simulating liquid water /W. L. Jorgensen, J. Chandrasekhar, J. D. Madura et al. // J. Chem. Phys. 1983. V.79. P. 926–935.89. MacKerell, A. D. Jr. All-atom empirical potential for molecular modeling and dynamics studiesof proteins / A. D. MacKerell Jr., D. Bashford, M. Bellott et al. // J. Phys. Chem. B. 1998.
V.102.P. 3586–3616.90. MacKerell, A. D. Jr. All-atom empirical force field for nucleic acids: 2) Application tomolecular dynamics simulations of DNA and RNA in solution / A. D. MacKerell Jr., N. Banavali, //J. Comput. Chem. 2000. V. 21. P. 105–120.91. Essmann, U. A smooth particle mesh Ewald method / U.
Essmann, L. Perera, M. L. Berkowitzet al. // J. Chem. Phys. 1995. V. 103. P. 8577–8593.92. Keller, B. Comparing geometric and kinetic cluster algorithms for molecular simulation data /B. Keller, X. Daura, W. F. van Gunsteren // J. Chem. Phys. 2010. V. 132, N 7. 074110.93. Noe, F. Hierarchical analysis of conformational dynamics in biomolecules: transition networksof metastable states / F. Noe, I. Horenko, C. Schutte et al.