Диссертация (1145986), страница 32
Текст из файла (страница 32)
R. G. Dostmann // FEBS Lett. 1995. V.375.P. 231–234.8. Aandahl, E. M. Protein kinase A type I antagonist restores immune responses of T cells fromHIV-infected patients / E. M. Aandahl, P. Aukrust, B. S. Skalhegg et al. // FASEB J. 1998. V. 12.P. 855–862.9. Yang, W. L. Novel function of the regulatory subunit of protein kinase A: regulation ofcytochrome c oxidase activity and cytochrome c release / W. L. Yang, L. Iacono, W.
M. Tang et al. //Biochemistry-US. 1998. V. 37, N 40. P. 14175–14180.10. Mavrakis, M. mTOR kinase and the regulatory subunit of protein kinase A (PRKAR1A)spatially and functionally interact during autophagosome maturation / M. Mavrakis, J. LippincottSchwartz, C. A. Stratakis et al. // Autophagy. 2007. V. 3, N 2. P. 151–153.11. Chaturvedi, D. Subcellular Localization and biological actions of activated RSK1 aredetermined by its interactions with subunits of cyclic AMP-dependent protein kinase / D. Chaturvedi,H.
M. Poppleton, T. Stringfield et al. // Mol. Cell. Biol. 2006. V. 26, N 12. P. 4586–4600.12. Zhang, L. A. Transforming growth factor β-induced Smad3/Smad4 complex directly activatesprotein kinase A. / L. Zhang, C. J. Duan, C. Binkley et al. // Mol. Cell. Biol. 2004. V. 24, N 5. P. 2169–2180.13. Yang, W.-L. Interaction of the regulatory subunit of the cAMP-dependent protein kinase withPATZ1 (ZNF278) / W.-L.
Yang, R. Ravatn, K. Kudoh et al. // Biochem. Bioph. Res. Co. 2010. V. 391,134N 3. P. 1318–1323.14. Gupte, R. S. The second subunit of the replication factor C complex (RFC40) and the regulatorysubunit (RIa) of protein kinase A form a protein complex promoting cell survival / R. S. Gupte,Y. Weng, L. Liu et al. // Cell Cycle. 2005. V. 4, N 2.
P. 323–329.15. Passner, J. M. Modeling the cAMP-induced allosteric transition using the crystal structure ofCAP-cAMP at 2.1 A resolution / J. M. Passner, S. C. Schultz, T. A. Steitz // J. Mol. Biol. 2000. V. 304.P. 847–859.16. Joyce, M. G. CprK crystal structures reveal mechanism for transcriptional control ofhalorespiration / M.G. Joyce, C. Levy, K. Gabor et al. // J. Biol.
Chem. 2006. V. 281, N 38. P. 28318–28325.17. Giardina, G. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulatorDNR / G. Giardina, S. Rinaldo, K. A. Johnson et al. // J. Mol. Biol. 2008. V. 378. P. 1002–1015.18. Lanzilotta, W. N. Structure of the CO sensing transcription activator CooA / W. N. Lanzilotta,D. J. Schuller, M. V. Thorsteinsson et al.
// Nat. Struct. Biol. 2000. V. 7. P. 876–880.19. Zagotta, W. N. Structural basis for modulation and agonist specificity of HCN pacemakerchannels / W.N. Zagotta, N.B. Olivier, K.D. Black et al. // Nature. 2003. V. 425. P. 200–205.20. Flynn, G. E. Structure and rearrangements in the carboxy-terminal region of SpIH channels /G. E. Flynn, K.
D. Black, L. D. Islas et al. // Structure. 2007. V. 15, N 6. P. 671–682.21. Kaupp, U. B. Cyclic nucleotide-gated ion channels / U. B. Kaupp, R. Seifert // Physiol Rev.2002. V. 82. P. 769–824.22. Rehmann, H. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its autoinhibited state / H. Rehmann, J. Das, P. Knipscheer et al. // Nature. 2006. V. 439. P. 625–628.23.
Rehmann, H. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B /H. Rehmann, E. Arias-Palomo, M. A. Hadders et al. // Nature. 2008. V. 455. P. 124–127.24. Canaves, J. M. Classification and phylogenetic analysis of the cAMP-dependent protein kinaseregulatory subunit family / J.
M. Canaves, S. S. Taylor // J. Mol. Evol. 2002. V. 54, N 1. P. 17–29.25. Hofmann, F. Rising behind NO: cGMP-dependent protein kinases / F. Hofmann,A. Ammendola, J. Schlossmann // J. Cell Sci. 2000. V. 113. P. 1671–1676.26. Osborne, B. W. Crystal structure of cGMP-dependent protein kinase reveals novel site ofinterchain communication / B. W.
Osborne, J. Wu, C. J. Mcfarland et al. // Structure. 2011. V. 19, N 9.P. 1317–1327.27. Wu, J. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP / J.
Wu,J. M. Jones, X. Nguyen-Huu et al. // Biochemistry-US. 2004. V. 43, N 21. P. 6620–6629.13528. Kim, C. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunitsof PKA / C. Kim, N.-H. Xuong, S. S.Taylor // Science. 2005. V. 307, N 5710. P. 690–696.29.
Boettcher, A. J. Realizing the allosteric potential of the tetrameric protein kinase A RIαholoenzyme. / A. J. Boettcher, J. Wu, C. Kim et al. // Structure. 2011. V. 9. P. 265–276.30. Harper, S. M. Structural dynamics in the activation of Epac / S. M. Harper, H. Wienk,R. W.
Wechselberger et al. // J. Biol. Chem. 2008. V. 283, N 10. P. 6501–6508.31. Akimotoa, M. Signaling through dynamic linkers as revealed by PKA / M. Akimotoa,R. Selvaratnama, E. T. McNicholla et al. // P. Natl. Acad. Sci. USA. 2013. V. 110, N 35. P. 14231–14236.32. Sjoberg, T. J. Dissecting the cAMP-inducible allosteric switch in protein kinase A RIalpha /T.
J. Sjoberg, A. P. Kornev, S. S.Taylor // Protein Sci. 2010. V. 19, N 6. P. 1213–1221.33. Rehmann, H. Structure and regulation of the cAMP-binding domains of Epac2 / H. Rehmann,B. Prakash, E. Wolf et al. // Nat. Struct. Biol. 2003. V. 10, N 1.
P. 26–32.34. Steinberg, R. A. Arginine 210 is not a critical residue for the allosteric interactions mediated bybinding of cyclic AMP to site A of regulatory (RIα) subunit of cyclic AMP-dependent protein kinase /R. A. Steinberg, M. M. Symcox, S. Sollid et al.// J. Biol. Chem. 1996. V. 271, N 44. P.
27630–27636.35. Gibson, R. M. Interaction of the regulatory and catalytic subunits of cAMP-dependent proteinkinase. Electrostatic sites on the type I-alpha regulatory subunit / R. M. Gibson, Y. Ji-Buechler,S. S. Taylor // J. Biol. Chem. 1997. V. 272. P. 16343–16350.36. Gullingsrud, J. Dynamic binding of PKA regulatory subunit RIalpha / J. Gullingsrud, C. Kim,S. S. Taylor et al.
// Structure. 2006. V. 14. P. 141–149.37. Gong, B. Exchange protein directly activated by cAMP plays a critical role in bacterial invasionduring fatal rickettsioses / B. Gong, T. Shelite, F. C. Mei et al. // P. Natl. Acad. Sci. USA. 2013. V. 110,N 48. P. 9615–19620.38. Walsh, D. A. An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletalmuscle / D. A. Walsh, J. P. Perkins, E. G. Krebs // J. Biol. Chem. 1968.
V. 243. P. 3763–3765.39. Sanchez, C. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance forthe regulation of the neuronal cytoskeleton function / C. Sanchez, J. Diaz-Nido, J. Avila // Prog.Neurobiol. 2000. V. 61, N 2. P. 133–168.40. Dhalla, N. S. Protein kinases as drug development targets for heart disease therapy /N. S. Dhalla, A. L. Muller// Pharmaceuticals.
2010. V. 3. P. 2111–2145.41. Proud, C. G. Amino acid sequences at the two sites on glycogen synthetase phosphorylated bycyclic AMP-dependent protein kinase and their dephosphorylation by protein phosphatase-III /C. G. Proud, D. B. Rylatt, S. J. Yeaman et al. // FEBS Lett. 1977. V. 80, N 2. P. 435–442.42. Anand, G. S. Cyclic-AMP and pseudosubstrate effects on type-I A-kinase regulatory and136catalytic subunit binding kinetics / G. S. Anand, S. S. Taylor, D.
A. Johnson // Biochemistry-US. 2007.V. 46. P. 9283–9291.43. Kopperud, R. Formation of inactive cAMP-saturated holoenzyme of cAMP-dependent proteinkinase under physiological conditions / R. Kopperud, A. E. Christensen, E. Kjærland et al. // J. Biol.Chem. 2002. V. 277, N 16.
P. 13443–13448.44. Vigil, D. A simple electrostatic switch important in the activation of type I protein kinase A bycyclic AMP / D. Vigil, J. H. Lin, C. A. Sotriffer et al. // Protein Sci. 2006. V. 15, N 1. P. 113–121.45. Kornev, A. P. A generalized allosteric mechanism for cis-regulated cyclic nucleotide bindingdomains / A. P. Kornev, S. S. Taylor, L.
F. Ten Eyck // PLoS Comput. Biol. 2008. V. 4, N 4. e1000056.46. Bruystens, J. G. H. PKA RIα homodimer structure reveals an intermolecular interface withimplications for cooperative cAMP binding and Carney complex disease / J. G. H Bruystens, J. Wu,A. Fortezzo et al. // Structure. 2014. V. 22, N 1. P. 59–69.47. Weldon, S. L. Monoclonal antibodies as probes for functional domains in cAMP-dependentprotein kinase II / S. L. Weldon, S. S.
Taylor // J. Biol. Chem. 1995. V. 260, N 7. P. 4203–4209.48. Vigil, D. Conformational differences among solution structures of the type Ialpha, IIalpha andIIbeta protein kinase A regulatory subunit homodimers: role of the linker regions / D.
Vigil,D. K. Blumenthal, W. T. Heller et al. // J. Mol. Biol. 2004. V. 337, N 5. P. 1183–1194.49. Durgerian, S. The consequences of Introducing an autophosphorylation site into the type Iregulatory subunit of cAMP-dependent protein kinase A / S. Durgerian, S. S. Taylor // J. Biol.
Chem.1989. V. 264, N 17. P. 9807–9813.50. Marchler-Bauer, A. CDD: Conserved domains and protein three-dimensional structure /A. Marchler-Bauer, C. Zheng, F. Chitsaz et al. // Nucleic Acids Res. 2012. V. 41. P. D348–D352.51. Murzin, A. G SCOP: a structural classification of proteins database for the investigation ofsequences and structures / A. G. Murzin, S.
E. Brenner, T. J. P. Hubbard et al. // J. Mol. Biol. 1995.V. 247. P. 536–540.52. Kannan, N. Evolution of allostery in the cyclic nucleotide binding module / N. Kannan, J. Wu,J. Anand et al. // Genome Biol. 2007. V. 8, N 12. R264.53. McNicholl, E. T.