Диссертация (1145681), страница 23
Текст из файла (страница 23)
Structure, function, and amyloidogenesis offungal prions: filament polymorphism and prion variants. Adv. Protein Chem. 73, 125–180 (2006).16.Baxa, U. et al. Characterization of beta-sheet structure in Ure2p1-89 yeast prion fibrils bysolid-state nuclear magnetic resonance. Biochemistry 46, 13149–13162 (2007).17.Baxa, U. Structural basis of infectious and non-infectious amyloids.
Curr Alzheimer Res 5,308–318 (2008).18.Beier, H. & Grimm, M. Misreading of termination codons in eukaryotes by natural nonsensesuppressor tRNAs. Nucleic Acids Res. 29, 4767–4782 (2001).19.Beier, H. & Grimm, M. Misreading of termination codons in eukaryotes by natural nonsensesuppressor tRNAs. Nucleic Acids Res. 29, 4767–4782 (2001).20.Belfield, G. P., Ross-Smith, N. J. & Tuite, M. F. Translation elongation factor-3 (EF-3): anevolving eukaryotic ribosomal protein? J. Mol. Evol.
41, 376–387 (1995).21.Benko, A. L., Vaduva, G., Martin, N. C. & Hopper, A. K. Competition between a sterolbiosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinerycauses altered nonsense suppression. Proc. Natl. Acad. Sci. U.S.A. 97, 61–66 (2000).22.Bhattacharya, A., McIntosh, K. B., Willis, I. M.
& Warner, J. R. Why Dom34 stimulates growth ofcells with defects of 40S ribosomal subunit biosynthesis. Mol. Cell. Biol. 30, 5562–5571 (2010).23.Blanchet, S., Cornu, D., Argentini, M. & Namy, O. New insights into the incorporation of naturalsuppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res. 42, 10061–10072(2014).24.Blinder, D., Coschigano, P. W.
& Magasanik, B. Interaction of the GATA factor Gln3p with thenitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734–4736 (1996).25.Blinder, D., Coschigano, P. W. & Magasanik, B. Interaction of the GATA factor Gln3p with thenitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734–4736 (1996).26.Bonetti, B., Fu, L., Moon, J. & Bedwell, D. M. The efficiency of translation termination isdetermined by a synergistic interplay between upstream and downstream sequences in Saccharomycescerevisiae.
J. Mol. Biol. 251, 334–345 (1995).27.Borchsenius, A. S., Tchourikova, A. A. & Inge-Vechtomov, S. G. Recessive mutations in SUP35and SUP45 genes coding for translation release factors affect chromosome stability in Saccharomycescerevisiae. Curr. Genet. 37, 285–291 (2000).13328.Brachmann, A., Baxa, U. & Wickner, R. B. Prion generation in vitro: amyloid of Ure2p isinfectious. EMBO J. 24, 3082–3092 (2005).29.Bradley, M. E., Edskes, H.
K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions amongprions and prion ‘strains’ in yeast. Proc. Natl. Acad. Sci. U.S.A. 99 Suppl 4, 16392–16399 (2002).30.Breining, P. & Piepersberg, W. Yeast omnipotent supressor SUP1 (SUP45): nucleotide sequence ofthe wildtype and a mutant gene. Nucleic Acids Res. 14, 5187–5197 (1986).31.Brigotti, M., Rambelli, F., Zamboni, M., Montanaro, L. & Sperti, S.
Effect of alpha-sarcin andribosome-inactivating proteins on the interaction of elongation factors with ribosomes. Biochem. J. 257,723–727 (1989).32.Bühler, M., Steiner, S., Mohn, F., Paillusson, A. & Mühlemann, O. EJC-independent degradationof nonsense immunoglobulin-mu mRNA depends on 3’ UTR length.
Nat. Struct. Mol. Biol. 13, 462–464(2006).33.Bulygin, K. N. et al. Three distinct peptides from the N domain of translation termination factoreRF1 surround stop codon in the ribosome. RNA 16, 1902–1914 (2010).34.Burck, C. L., Chernoff, Y. O., Liu, R., Farabaugh, P. J. & Liebman, S. W. Translational suppressorsand antisuppressors alter the efficiency of the Ty1 programmed translational frameshift.
RNA 5,1451–1457 (1999).35.Burgess, S. M. & Guthrie, C. Beat the clock: paradigms for NTPases in the maintenance ofbiological fidelity. Trends Biochem. Sci. 18, 381–384 (1993).36.Cao, D. & Parker, R. Computational modeling and experimental analysis of nonsense-mediateddecay in yeast. Cell 113, 533–545 (2003).37.Carr-Schmid, A., Durko, N., Cavallius, J., Merrick, W. C. & Kinzy, T. G.
Mutations in aGTP-binding motif of eukaryotic elongation factor 1A reduce both translational fidelity and therequirement for nucleotide exchange. J. Biol. Chem. 274, 30297–30302 (1999).38.Cavallius, J. & Merrick, W. C. Site-directed mutagenesis of yeast eEF1A. Viable mutants withaltered nucleotide specificity. J. Biol.
Chem. 273, 28752–28758 (1998).39.Chacinska, A. et al. Ssb1 chaperone is a [PSI+] prion-curing factor. Curr. Genet. 39, 62–67 (2001).40.Chakrabortee, S. et al. Intrinsically Disordered Proteins Drive Emergence and Inheritance ofBiological Traits.
Cell 167, 369–381.e12 (2016).41.Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 tothe exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93(2008).42.Chavatte, L., Seit-Nebi, A., Dubovaya, V. & Favre, A. The invariant uridine of stop codons134contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J.
21, 5302–5311 (2002).43.Chernoff, Y. O., Derkach, I. L. & Inge-Vechtomov, S. G. Multicopy SUP35 gene induces de-novoappearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270 (1993).44.Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of thechaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884(1995).45.Chernoff, Y. O., Newnam, G. P. & Liebman, S. W. The translational function of nucleotide C1054in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast.
Proc. Natl. Acad.Sci. U.S.A. 93, 2517–2522 (1996).46.Chernoff, Y. O., Vincent, A. & Liebman, S. W. Mutations in eukaryotic 18S ribosomal RNA affecttranslational fidelity and resistance to aminoglycoside antibiotics. EMBO J. 13, 906–913 (1994).47.Chien, P., Weissman, J. S. & DePace, A.
H. Emerging principles of conformation-based prioninheritance. Annu. Rev. Biochem. 73, 617–656 (2004).48.Conard, S. E. et al. Identification of eRF1 residues that play critical and complementary roles instop codon recognition. RNA 18, 1210–1221 (2012).49.Cosson, B. et al. Poly(A)-binding protein acts in translation termination via eukaryotic releasefactor 3 interaction and does not influence [PSI(+)] propagation.
Mol. Cell. Biol. 22, 3301–3315 (2002).50.Cox, B. S., Tuite, M. F. & McLaughlin, C. S. The psi factor of yeast: a problem in inheritance.Yeast 4, 159–178 (1988).51.Crow, E. T. & Li, L. Newly identified prions in budding yeast, and their possible functions. Semin.Cell Dev. Biol. 22, 452–459 (2011).52.Cui, Y., Hagan, K.
W., Zhang, S. & Peltz, S. W. Identification and characterization of genes thatare required for the accelerated degradation of mRNAs containing a premature translational terminationcodon. Genes Dev. 9, 423–436 (1995).53.Cunningham, T. S., Andhare, R.
& Cooper, T. G. Nitrogen catabolite repression of DAL80expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J.Biol. Chem. 275, 14408–14414 (2000).54.Czaplinski, K. et al. The surveillance complex interacts with the translation release factors toenhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).55.Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M.
& Yusupova, G. New structural insights intothe decoding mechanism: translation infidelity via a G·U pair with Watson-Crick geometry. FEBS Lett.587, 1848–1857 (2013).56.DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene135expression on a genomic scale. Science 278, 680–686 (1997).57.Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S.
W. Prions affect the appearance of otherprions: the story of [PIN(+)]. Cell 106, 171–182 (2001).58.Derkatch, I. L., Bradley, M. E. & Liebman, S. W. Overexpression of the SUP45 gene encoding aSup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proc. Natl.Acad. Sci. U.S.A. 95, 2400–2405 (1998).59.Derkatch, I.
L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic andenvironmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae.Genetics 147, 507–519 (1997).60.Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W.Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386(1996).61.Derkatch, I. L. & Liebman, S.