Диссертация (1145681), страница 24
Текст из файла (страница 24)
W. Prion-prion interactions. Prion 1, 161–169 (2007).62.des Georges, A. et al. Structure of the mammalian ribosomal pre-termination complex associatedwith eRF1.eRF3.GDPNP. Nucleic Acids Res. 42, 3409–3418 (2014).63.Dever, T. E. & Green, R. The elongation, termination, and recycling phases of translation ineukaryotes. Cold Spring Harb Perspect Biol 4, a013706 (2012).64.Dinman, J.
D., Ruiz-Echevarria, M. J., Czaplinski, K. & Peltz, S. W. Peptidyl-transferase inhibitorshave antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development ofmodel systems. Proc. Natl. Acad. Sci. U.S.A. 94, 6606–6611 (1997).65.Dinman, J. D., Ruiz-Echevarria, M. J.
& Peltz, S. W. Translating old drugs into new treatments:ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol. 16, 190–196 (1998).66.Dinman, J. D. & Wickner, R. B. 5 S rRNA is involved in fidelity of translational reading frame.Genetics 141, 95–105 (1995).67.Drozdova, P., Mironova, L. & Zhouravleva, G.
Haploid yeast cells undergo a reversible phenotypicswitch associated with chromosome II copy number. BMC Genet. 17, 152 (2016).68.Du, Z. & Li, L. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].Genetics 197, 685–700 (2014).69.Eaglestone, S. S., Cox, B.
S. & Tuite, M. F. Translation termination efficiency can be regulated inSaccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18,1974–1981 (1999).70.Eberle, A. B., Stalder, L., Mathys, H., Orozco, R. Z. & Mühlemann, O. Posttranscriptional generegulation by spatial rearrangement of the 3’ untranslated region. PLoS Biol.
6, e92 (2008).13671.El’skaya, A. V. et al. Three tRNA binding sites in rabbit liver ribosomes and role of the intrinsicATPase in 80S ribosomes from higher eukaryotes. Biochemistry 36, 10492–10497 (1997).72.Eurwilaichitr, L., Graves, F. M., Stansfield, I. & Tuite, M. F. The C-terminus of eRF1 defines afunctionally important domain for translation termination in Saccharomyces cerevisiae.
Mol. Microbiol.32, 485–496 (1999).73.Eustice, D. C., Wakem, L. P., Wilhelm, J. M. & Sherman, F. Altered 40 S ribosomal subunits inomnipotent suppressors of yeast. J. Mol. Biol. 188, 207–214 (1986).74.Feng, Y. X., Copeland, T. D., Oroszlan, S., Rein, A. & Levin, J. G. Identification of amino acidsinserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloneymurine leukemia virus. Proc Natl Acad Sci U S A 87, 8860–8863 (1990).75.Ferreira, P.
C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast[PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40,1357–1369 (2001).76.Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lackingtermination codons. Science 295, 2258–2261 (2002).77.Frolova, L. et al.
A highly conserved eukaryotic protein family possessing properties ofpolypeptide chain release factor. Nature 372, 701–703 (1994).78.Ganusova, E. E. et al. Modulation of prion formation, aggregation, and toxicity by the actincytoskeleton in yeast. Mol. Cell. Biol. 26, 617–629 (2006).79.Gilmore, R.
A. & Mortimer, R. K. Super-suppressor mutations in Saccharomyces cerevisiae. J.Mol. Biol. 20, 307–311 (1966).80.Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], aheritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).81.Goss Kinzy, T. et al. New targets for antivirals: the ribosomal A-site and the factors that interactwith it.
Virology 300, 60–70 (2002).82.Grishin, A. V., Rothenberg, M., Downs, M. A. & Blumer, K. J. Mot3, a Zn finger transcriptionfactor that modulates gene expression and attenuates mating pheromone signaling in Saccharomycescerevisiae. Genetics 149, 879–892 (1998).83.Grishin, A. V., Rothenberg, M., Downs, M. A. & Blumer, K. J. Mot3, a Zn finger transcriptionfactor that modulates gene expression and attenuates mating pheromone signaling in Saccharomycescerevisiae. Genetics 149, 879–892 (1998).84.Harbi, D.
et al. PrionHome: a database of prions and other sequences relevant to prion phenomena.PLoS ONE 7, e31785 (2012).13785.Harger, J. W., Meskauskas, A., Nielsen, J., Justice, M. C. & Dinman, J. D. Ty1 retrotranspositionand programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocationstep. Virology 286, 216–224 (2001).86.Harrison, P.
M. & Gerstein, M. A method to assess compositional bias in biological sequences andits application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol. 4,R40 (2003).87.Hawthorne, D. C. & Mortimer, R. K. Genetic mapping of nonsense suppressors in yeast. Genetics60, 735–742 (1968).88.Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P.
V. Novel Ciliate GeneticCode Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostomamagnum. Mol. Biol. Evol. 33, 2885–2889 (2016).89.Hendrick, J. L. et al. Yeast frameshift suppressor mutations in the genes coding for transcriptionfactor Mbf1p and ribosomal protein S3: evidence for autoregulation of S3 synthesis. Genetics 157,1141–1158 (2001).90.Higurashi, T., Hines, J. K., Sahi, C., Aron, R. & Craig, E.
A. Specificity of the J-protein Sis1 in thepropagation of 3 yeast prions. Proc. Natl. Acad. Sci. U.S.A. 105, 16596–16601 (2008).91.Higurashi, T., Hines, J. K., Sahi, C., Aron, R. & Craig, E. A. Specificity of the J-protein Sis1 in thepropagation of 3 yeast prions. Proc. Natl. Acad. Sci. U.S.A. 105, 16596–16601 (2008).92.Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosyntheticprocesses requiring high specificity.
Proc. Natl. Acad. Sci. U.S.A. 71, 4135–4139 (1974).93.Hung, G.-C. & Masison, D. C. N-terminal domain of yeast Hsp104 chaperone is dispensable forthermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression.Genetics 173, 611–620 (2006).94.Inge-Vechtomov, S., Zhouravleva, G. & Philippe, M. Eukaryotic release factors (eRFs) history.Biol. Cell 95, 195–209 (2003).95.Inge-Vechtomov, S. G., Soidla, T. R., Kozin, S.
A. & Simarov, B. V. Super-suppressor inducedinterallelic complementation. J. Mol. Biol. 19, 583–585 (1966).96.Inoue, Y. Life cycle of yeast prions: propagation mediated by amyloid fibrils. Protein Pept. Lett. 16,271–276 (2009).97.Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W. & Kulozik, A. E. Interactions betweenUPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMDpathways.
EMBO J. 27, 736–747 (2008).98.Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W. & Kulozik, A. E. Interactions between138UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMDpathways. EMBO J. 27, 736–747 (2008).99.Johansson, M. J. O. & Jacobson, A. Nonsense-mediated mRNA decay maintains translationalfidelity by limiting magnesium uptake.
Genes Dev. 24, 1491–1495 (2010).100.Jung, G., Jones, G., Wegrzyn, R. D. & Masison, D. C. A role for cytosolic hsp70 in yeast [PSI(+)]prion propagation and [PSI(+)] as a cellular stress. Genetics 156, 559–570 (2000).101.Jung, G. & Masison, D. C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possibleexplanation for its effect in curing yeast prions. Curr.
Microbiol. 43, 7–10 (2001).102.Jung, G., Jones, G. & Masison, D. C. Amino acid residue 184 of yeast Hsp104 chaperone iscritical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl. Acad. Sci.U.S.A. 99, 9936–9941 (2002).103.Kandl, K. A. et al. Identification of a role for actin in translational fidelity in yeast. Mol. Genet.Genomics 268, 10–18 (2002).104.Karcher, A., Büttner, K., Märtens, B., Jansen, R.-P. & Hopfner, K.-P. X-ray structure of RLI, anessential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Structure13, 649–659 (2005).105.Karcher, A., Schele, A.
& Hopfner, K.-P. X-ray structure of the complete ABC enzyme ABCE1from Pyrococcus abyssi. J. Biol. Chem. 283, 7962–7971 (2008).106.Kawai-Noma, S. et al. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. J.Cell Biol. 190, 223–231 (2010).107.Keeling, K. M., Xue, X., Gunn, G. & Bedwell, D. M.
Therapeutics based on stop codonreadthrough. Annu Rev Genomics Hum Genet 15, 371–394 (2014).108.Kervestin, S., Li, C., Buckingham, R. & Jacobson, A. Testing the faux-UTR model for NMD:analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 94, 1560–1571 (2012).109.Khoshnevis, S.
et al. The iron-sulphur protein RNase L inhibitor functions in translationtermination. EMBO Rep. 11, 214–219 (2010).110.Kiel, M. C., Aoki, H. & Ganoza, M. C. Identification of a ribosomal ATPase in Escherichia colicells. Biochimie 81, 1097–1108 (1999).111.Kiktev, D., Vechtomov, S. I.
& Zhouravleva, G. Prion-dependent lethality of sup45 mutants inSaccharomyces cerevisiae. Prion 1, 136–143 (2007).112.Kimura, Y., Koitabashi, S. & Fujita, T. Analysis of yeast prion aggregates with amyloid-stainingcompound in vivo. Cell Struct. Funct. 28, 187–193 (2003).113.King, C.-Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428,139319–323 (2004).114.King, C. Y.
et al. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro intoamyloid-like filaments. Proc. Natl. Acad. Sci. U.S.A. 94, 6618–6622 (1997).115.Kinzy, T. G., Ripmaster, T. L. & Woolford, J. L. Multiple genes encode the translation elongationfactor EF-1 gamma in Saccharomyces cerevisiae. Nucleic Acids Res. 22, 2703–2707 (1994).116.Klauer, A. A. & van Hoof, A. Degradation of mRNAs that lack a stop codon: a decade of nonstopprogress.