Диссертация (1145681), страница 26
Текст из файла (страница 26)
V. & El’Skaya, A. V. ATPase strongly boundto higher eukaryotic ribosomes. Eur. J. Biochem. 225, 305–310 (1994).168.Romanova, N. V. & Chernoff, Y. O. Hsp104 and prion propagation. Protein Pept. Lett. 16,598–605 (2009).169.Rosen, B., Rothman, F. & Weigert, M. G. Miscoding caused by 5-fluorouracil. J. Mol. Biol. 44,363–375 (1969).170.Ross, E. D., Minton, A.
& Wickner, R. B. Prion domains: sequences, structures and interactions.Nat. Cell Biol. 7, 1039–1044 (2005).171.Ross, E. D. & Toombs, J. A. The effects of amino acid composition on yeast prion formation andprion domain interactions. Prion 4, 60–65 (2010).172.Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodelling: the industrial revolution of DNAaround histones. Nat. Rev. Mol. Cell Biol.
7, 437–447 (2006).143173.Saifitdinova, A. F. et al. [NSI (+)]: a novel non-Mendelian nonsense suppressor determinant inSaccharomyces cerevisiae. Curr. Genet. 56, 467–478 (2010).174.Saifitdinova, A. F. et al. [NSI (+)]: a novel non-Mendelian nonsense suppressor determinant inSaccharomyces cerevisiae. Curr. Genet. 56, 467–478 (2010).175.Schwimmer, C. & Masison, D. C. Antagonistic interactions between yeast [PSI(+)] and [URE3]prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p.
Mol. Cell. Biol. 22,3590–3598 (2002).176.Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. Release factors differing in specificityfor terminator codons. Proc. Natl. Acad. Sci. U.S.A. 61, 768–774 (1968).177.Seit-Nebi, A., Frolova, L. & Kisselev, L. Conversion of omnipotent translation termination factoreRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Rep. 3, 881–886 (2002).178.Serio, T. R., Cashikar, A. G., Moslehi, J. J., Kowal, A. S. & Lindquist, S.
L. Yeast prion [psi +]and its determinant, Sup35p. Meth. Enzymol. 309, 649–673 (1999).179.Serio, T. R., Cashikar, A. G., Moslehi, J. J., Kowal, A. S. & Lindquist, S. L. Yeast prion [psi +]and its determinant, Sup35p. Meth. Enzymol. 309, 649–673 (1999).180.Sherman, F. et al.
The mutational alteration of the primary structure of yeast iso-1-cytochrome c.J. Biol. Chem. 243, 5446–5456 (1968).181.Shoemaker, C. J., Eyler, D. E. & Green, R. Dom34:Hbs1 promotes subunit dissociation andpeptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369–372 (2010).182.Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed forefficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).183.Silva, A. L., Ribeiro, P., Inácio, A., Liebhaber, S.
A. & Romão, L. Proximity of thepoly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNAdecay. RNA 14, 563–576 (2008).184.Singh, A., Ursic, D. & Davies, J. Phenotypic suppression and misreading Saccharomycescerevisiae.
Nature 277, 146–148 (1979).185.Singh, G., Rebbapragada, I. & Lykke-Andersen, J. A competition between stimulators andantagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6,e111 (2008).186.Skogerson, L. & Engelhardt, D. Dissimilarity in protein chain elongation factor requirementsbetween yeast and rat liver ribosomes. J. Biol. Chem. 252, 1471–1475 (1977).187.Smith, M. W., Meskauskas, A., Wang, P., Sergiev, P. V. & Dinman, J. D. Saturation mutagenesisof 5S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol.
21, 8264–8275 (2001).144188.Smith, R. L. & Johnson, A. D. Turning genes off by Ssn6-Tup1: a conserved system oftranscriptional repression in eukaryotes. Trends Biochem. Sci. 25, 325–330 (2000).189.Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol.Cell 5, 163–172 (2000).190.Sondheimer, N., Lopez, N., Craig, E. A.
& Lindquist, S. The role of Sis1 in the maintenance ofthe [RNQ+] prion. EMBO J. 20, 2435–2442 (2001).191.Song, H. et al. The crystal structure of human eukaryotic release factor eRF1--mechanism of stopcodon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000).192.Song, J. M. et al. Elongation factor EF-1 alpha gene dosage alters translational fidelity inSaccharomyces cerevisiae. Mol.
Cell. Biol. 9, 4571–4575 (1989).193.Song, J. M. et al. Elongation factor EF-1 alpha gene dosage alters translational fidelity inSaccharomyces cerevisiae. Molecular and Cellular Biology 9, 4571–4575194.Stansfield, I., Jones, K. M. & Tuite, M. F. The end in sight: terminating translation in eukaryotes.Trends Biochem. Sci. 20, 489–491 (1995).195.Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic Codes with No Dedicated Stop Codon:Context-Dependent Translation Termination. Cell 166, 691–702 (2016).196.Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.
S. Conformational variations in aninfectious protein determine prion strain differences. Nature 428, 323–328 (2004).197.Tate, W. P. et al. Translational termination efficiency in both bacteria and mammals is regulatedby the base following the stop codon. Biochem. Cell Biol. 73, 1095–1103 (1995).198.Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V.
V. & Smirnov, V. N. The SUP35omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] inthe yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994).199.Ter-Avanesyan, M. D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomycescerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7,683–692 (1993).200.Tsuboi, T.
et al. Dom34:hbs1 plays a general role in quality-control systems by dissociation of astalled ribosome at the 3’ end of aberrant mRNA. Mol. Cell 46, 518–529 (2012).201.Tyedmers, J., Madariaga, M. L. & Lindquist, S. Prion switching in response to environmentalstress. PLoS Biol. 6, e294 (2008).202.Tyedmers, J. et al. Prion induction involves an ancient system for the sequestration of aggregatedproteins and heritable changes in prion fragmentation. Proc.
Natl. Acad. Sci. U.S.A. 107, 8633–8638(2010).145203.Uritani, M. & Miyazaki, M. Role of yeast peptide elongation factor 3 (EF-3) at the AA-tRNAbinding step. J. Biochem. 104, 118–126 (1988).204.Valouev, I. A., Kushnirov, V. V. & Ter-Avanesyan, M. D. Yeast polypeptide chain release factorseRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil.Cytoskeleton 52, 161–173 (2002).205.van Hoof, A., Frischmeyer, P. A., Dietz, H.
C. & Parker, R. Exosome-mediated recognition anddegradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).206.Vasudevan, S., Peltz, S. W. & Wilusz, C. J. Non-stop decay--a new mRNA surveillance pathway.Bioessays 24, 785–788 (2002).207.Velichutina, I. V. et al. Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNAaffect the function of the decoding center of the ribosome. RNA 6, 1174–1184 (2000).208.Velichutina, I. V., Hong, J.
Y., Mesecar, A. D., Chernoff, Y. O. & Liebman, S. W. Geneticinteraction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA.J. Mol. Biol. 305, 715–727 (2001).209.Vincent, A. & Liebman, S. W. The yeast omnipotent suppressor SUP46 encodes a ribosomalprotein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics 132,375–386 (1992).210.Vishveshwara, N., Bradley, M. E. & Liebman, S. W. Sequestration of essential proteins causesprion associated toxicity in yeast. Mol. Microbiol. 73, 1101–1114 (2009).211.Wai, H. H., Vu, L., Oakes, M. & Nomura, M.
Complete deletion of yeast chromosomal rDNArepeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis ofrDNA promoter elements in vivo. Nucleic Acids Res. 28, 3524–3534 (2000).212.Wang, J., Gudikote, J. P., Olivas, O. R. & Wilkinson, M. F. Boundary-independent polarnonsense-mediated decay.
EMBO Rep. 3, 274–279 (2002).213.Wang, W., Czaplinski, K., Rao, Y. & Peltz, S. W. The role of Upf proteins in modulating thetranslation read-through of nonsense-containing transcripts. EMBO J. 20, 880–890 (2001).214.Weng, Y., Czaplinski, K. & Peltz, S. W. Genetic and biochemical characterization of mutations inthe ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol.
16, 5477–5490 (1996).215.Weng, Y., Czaplinski, K. & Peltz, S. W. Identification and characterization of mutations in theUPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNAturnover. Mol. Cell. Biol. 16, 5491–5506 (1996).216.Westhof, E., Yusupov, M. & Yusupova, G. Recognition of Watson-Crick base pairs: constraintsand limits due to geometric selection and tautomerism. F1000Prime Rep 6, 19 (2014).146217.Wickner, R.
B. [URE3] as an altered URE2 protein: evidence for a prion analog inSaccharomyces cerevisiae. Science 264, 566–569 (1994).218.Wickner, R. B. A new prion controls fungal cell fusion incompatibility. Proc. Natl. Acad. Sci.U.S.A. 94, 10012–10014 (1997).219.Wickner, R. B., Dyda, F. & Tycko, R. Amyloid of Rnq1p, the basis of the [PIN+] prion, has aparallel in-register beta-sheet structure. Proc.