Диссертация (1145681), страница 25
Текст из файла (страница 25)
Wiley Interdiscip Rev RNA 3, 649–660 (2012).117.Kobayashi, K. et al. Structural basis for mRNA surveillance by archaeal Pelota and GTP-boundEF1α complex. Proc. Natl. Acad. Sci. U.S.A. 107, 17575–17579 (2010).118.Kochneva-Pervukhova, N. V. et al. Mechanism of inhibition of Psi+ prion determinantpropagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).119.Kolosov, P. et al.
Invariant amino acids essential for decoding function of polypeptide releasefactor eRF1. Nucleic Acids Res. 33, 6418–6425 (2005).120.Kondrashkina, A. M., Antonets, K. S., Galkin, A. P. & Nizhnikov, A. A. [Prion-like determinant[NSI+] decreases expression of the SUP45 gene in Saccharomyces cerevisiae]. Mol. Biol. (Mosk.) 48,790–796 (2014).121.Kondrashkina, A. M., Antonets, K. S., Galkin, A. P. & Nizhnikov, A.
A. [Prion-like determinant[NSI+] decreases expression of the SUP45 gene in Saccharomyces cerevisiae]. Mol. Biol. (Mosk.) 48,790–796 (2014).122.Kovalchuke,O.&Chakraburtty,K.Comparativeanalysisofribosome-associatedadenosinetriphosphatase (ATPase) from pig liver and the ATPase of elongation factor 3 fromSaccharomyces cerevisiae. Eur. J. Biochem. 226, 133–140 (1994).123.Kryndushkin, D. S., Smirnov, V. N., Ter-Avanesyan, M. D. & Kushnirov, V. V.
Increasedexpression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions.J. Biol. Chem. 277, 23702–23708 (2002).124.Leeds, P., Wood, J. M., Lee, B. S. & Culbertson, M. R. Gene products that promote mRNAturnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2165–2177 (1992).125.Liebman, S. W. & Chernoff, Y. O. Prions in yeast. Genetics 191, 1041–1072 (2012).126.Liebman, S. W. & All-Robyn, J. A. A non-Mendelian factor, [eta(+)], causes lethality of yeastomnipotent-suppressor strains. Curr. Genet. 8, 567–573 (1984).127.Liebman, S. W., Chernoff, Y.
O. & Liu, R. The accuracy center of a eukaryotic ribosome.Biochem. Cell Biol. 73, 1141–1149 (1995).128.Liebman, S. W. & Sherman, F. Extrachromosomal psi+ determinant suppresses nonsense140mutations in yeast. J. Bacteriol. 139, 1068–1071 (1979).129.Liu, R. & Liebman, S. W. A translational fidelity mutation in the universally conservedsarcin/ricin domain of 25S yeast ribosomal RNA. RNA 2, 254–263 (1996).130.Magni, G. E., Von Borstel, R. C. & Steinberg, C. M.
Super-suppressors as addition-deletionmutations. J. Mol. Biol. 16, 568–570 (1966).131.Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D. & Alberti, S. Molecular chaperonesand stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of proteinaggregates. Mol. Biol. Cell 23, 3041–3056 (2012).132.Manney, T.
R. Evidence for chain termination by super-suppressible mutants in yeast. Genetics 60,719–733 (1968).133.Marion, R. M. et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein geneexpression. Proc. Natl. Acad. Sci. U.S.A. 101, 14315–14322 (2004).134.Masison, D. C., Maddelein, M.
L. & Wickner, R. B. The prion model for [URE3] of yeast:spontaneous generation and requirements for propagation. Proc. Natl. Acad. Sci. U.S.A. 94, 12503–12508(1997).135.Masurekar, M., Palmer, E., Ono, B. I., Wilhelm, J. M. & Sherman, F. Misreading of the ribosomalsuppressor SUP46 due to an altered 40 S subunit in yeast. J. Mol.
Biol. 147, 381–390 (1981).136.Matveenko, A. G. et al. SFP1-mediated prion-dependent lethality is caused by increased Sup35aggregation and alleviated by Sis1. Genes Cells 21, 1290–1308 (2016).137.McGlinchey, R. P., Kryndushkin, D. & Wickner, R. B. Suicidal [PSI+] is a lethal yeast prion. Proc.Natl.
Acad. Sci. U.S.A. 108, 5337–5341 (2011).138.Meaux, S., van Hoof, A. & Baker, K. E. Nonsense-mediated mRNA decay in yeast does notrequire PAB1 or a poly(A) tail. Mol. Cell 29, 134–140 (2008).139.Merkulova, T. I., Frolova, L. Y., Lazar, M., Camonis, J.
& Kisselev, L. L. C-terminal domains ofhuman translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443,41–47 (1999).140.Merrick, W. C. & Nyborg, J. 3 The Protein Biosynthesis, Elongation Cycle. Cold Spring HarborMonograph Archive 39, 89–125 (2000).141.Michelitsch, M. D. & Weissman, J. S.
A census of glutamine/asparagine-rich regions:implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. U.S.A.97, 11910–11915 (2000).142.Moazed, D., Robertson, J. M. & Noller, H. F. Interaction of elongation factors EF-G and EF-Tuwith a conserved loop in 23S RNA.
Nature 334, 362–364 (1988).141143.Moriyama, H., Edskes, H. K. & Wickner, R. B. [URE3] prion propagation in Saccharomycescerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell.Biol. 20, 8916–8922 (2000).144.Moskalenko, S. E., Chabelskaya, S. V., Inge-Vechtomov, S. G., Philippe, M. & Zhouravleva, G. A.Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae.
BMC Mol. Biol. 4, 2(2003).145.Murgola, E. J. tRNA, suppression, and the code. Annu. Rev. Genet. 19, 57–80 (1985).146.Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L. & Chernoff, Y. O. Antagonistic interactionsbetween yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333 (1999).147.Nizhnikov, A. A., Kondrashkina, A. M. & Galkin, A. P. [Interactions of [NSI+] determinant withSUP35 and VTS1 genes in Saccharomyces cerevisiae]. Genetika 49, 1155–1164 (2013).148.Nizhnikov, A.
A. et al. [NSI+] determinant has a pleiotropic phenotypic manifestation that ismodulated by SUP35, SUP45, and VTS1 genes. Curr. Genet. 58, 35–47 (2012).149.Ono, B. I., Tanaka, M., Kominami, M., Ishino, Y. & Shinoda, S. Recessive UAA suppressors ofthe yeast Saccharomyces cerevisiae. Genetics 102, 653–664 (1982).150.Ono, B.-I., Yoshida, R., Kamiya, K. & Sugimoto, T. Suppression of termination mutations causedby defects of the NMD machinery in Saccharomyces cerevisiae. Genes Genet. Syst. 80, 311–316 (2005).151.Orlowska-Matuszewska, G. & Wawrzycka, D.
A novel phenotype of eight spores asci in deletantsof the prion-like Rnq1p in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 340, 190–193(2006).152.Palmer, E., Wilhelm, J. M. & Sherman, F. Phenotypic suppression of nonsense mutants in yeastby aminoglycoside antibiotics. Nature 277, 148–150 (1979).153.Patel, B. K. & Liebman, S. W. ‘Prion-proof’ for [PIN+]: infection with in vitro-made amyloidaggregates of Rnq1p-(132-405) induces [PIN+]. J.
Mol. Biol. 365, 773–782 (2007).154.Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis forinheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).155.Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of theyeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptidechain release factor. EMBO J. 15, 3127–3134 (1996).156.Paushkin, S. V., Kushnirov, V. V., Smirnov, V.
N. & Ter-Avanesyan, M. D. Interaction betweenyeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications forprion-dependent regulation. Mol. Cell. Biol. 17, 2798–2805 (1997).157.Peltz, S. W. et al. Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss142of the yeast killer virus. Mol. Cell. Biol. 19, 384–391 (1999).158.Pezza, J. A., Villali, J., Sindi, S.
S. & Serio, T. R. Amyloid-associated activity contributes to theseverity and toxicity of a prion phenotype. Nat Commun 5, 4384 (2014).159.Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol.Cell 37, 196–210 (2010).160.Pisareva, V. P., Skabkin, M. A., Hellen, C. U. T., Pestova, T. V. & Pisarev, A. V. Dissociation byPelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBOJ.
30, 1804–1817 (2011).161.Proft, M. & Struhl, K. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into anactivator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol. Cell 9, 1307–1317 (2002).162.Proft, M. & Struhl, K. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into anactivator that recruits SAGA and SWI/SNF in response to osmotic stress.
Mol. Cell 9, 1307–1317 (2002).163.Prusiner, S. B. Molecular biology and pathogenesis of prion diseases. Trends Biochem. Sci. 21,482–487 (1996).164.Pure, G. A., Robinson, G. W., Naumovski, L. & Friedberg, E. C. Partial suppression of an ochremutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene.
J.Mol. Biol. 183, 31–42 (1985).165.Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572(2002).166.Roberts, B. T., Moriyama, H. & Wickner, R. B. [URE3] prion propagation is abolished by amutation of the primary cytosolic Hsp70 of budding yeast. Yeast 21, 107–117 (2004).167.Rodnina, M. V., Serebryanik, A. I., Ovcharenko, G.