Диссертация (1145260), страница 52
Текст из файла (страница 52)
P. 39–55.[215] Idem. Numerical studies of steady viscous incompressible flowbetween two rotating spheres // Comput. & Fluids. 1975. Vol. 3.N 1. P. 69–82.[216] Grimshaw R., Yi Z. Resonant generation of finite-amplitude wavesby the flow of a uniformly stratified fluid over topography // J.Fluid Mech. Vol. 229. P. 603–628.[217] Hamman G. Die Bildung von Sanddünen bei gleichmäbigenStrömung // Ann. Phys. 1912. Bd. 39. N 13.[218] Helmholtz H., Piotrovski G. Über Reinbug tropbarer Flubigkeiten.Wiss.
Abhandl. 1860. Bd. 1. IX.[219] Herzenberg A. Geomagnetic dynamos // Philos. Trans. R. Soc.Lond. Ser. A Math. Phys. Eng. Sci. 1958. Vol. 250. P. 543–585.– 444 –[220] Hide R., Stewartson K. Hydromagnetic oscillations of the earth’score // Rev. Geophys. Space Phys. 1972. Vol. 10. P. 579–598.[221] Hutter Kolumban. Waves and oscilations in the ocean and in lakes.Darmstadt: Selbstverlag, 1992. P. 162.[222] Ierley G.R. Macrodynamics of α2 -dynamos // Geophys. Asrophys.Fluid Dyn.
1985. Vol. 34. P. 143–173.[223] Jones C.A., Roberts P.H. Magnetoconvection in rapidly rotatingBoussinesq and compressible fluids // Ibid. 1990. Vol. 55. P. 263–308.[224] Jones C.A. Convection-driven geodynamo models // Phil. Trans.Roy. Soc. Lond. 2000. - Vol. A358. - P. 873-897.[225] Julien К., Knobloch E., Weme J. A new class of equationsfor rotation-ally constrained flows // Tlieoret.
Comput. FluidDynamics. 1998. Vol. 11. P. 251-261.[226] Kholodova S.E. Wave motion in a compressible stratified rotatingfluid // Comput. Math. Math. Phys. 2007. Vol. 47, N 12, P. 2014–2022.[227] Kholodova S.E. Dynamics of a rotating layer of ideal electricallyconducting incompressible fluid // Comput. Math. Math. Phys.2008. Vol.
48, N 5, P. 882–898.[228] Kholodova S.E. Quasi-geostrophic motions in a rotating layer of anelectrically conducting fluid // Comput. Math. Math. Phys. 2009.Vol. 49. N 1. P. 25–34.[229] Kholodova S.E. Wave motions in a stratified electrically conductingrotating fluid // Comput. Math. Math. Phys. 2009. Vol. 49. N 5.P. 881–886.– 445 –[230] Kholodova S.E., Peregudin S.I. Waves in a rotating layer of an idealelectrically conducting incompressible fluid with allowance effectsof diffusion of magnetic field // 20th International Workshop onBEAM Dynamics and Optimization, June 30 - July 4, 2014, Russia,Saint–Petersburg, P.
133-134.[231] Kholodova S.E., Peregudin S.I. Mathematical and numericalanalysisofthewavesmotioninelectricallyconductingincompressible fluid // Conference: International conferenceon numerical analysis and applied mathematics (IC-NAAM)location: Rhodes, Greece date: Sep 22-28, 2014. Proceedings ofthe international conference of numerical analysis and appliedmathematics 2014 (ICNAAM-2014) Book series: AIP Conferenceproceedings Volume: 1648 Article number: Unsp 450011 Published:2015.[232] Kholodova S.E., Peregudin S.I. Waves propagation in an infinitehorizontal layer and a long narrow channel // 2015 InternationalConference on Mechanics - Seventh Polyakhov’s Reading; SaintPetersburg State UniversitySt.
Petersburg; Russian Federation;2 February 2015 through 6 February 2015; Category numberCFP15A24-ART; Code 112290.[233] Kholodova S.E., Peregudin S.I. Impact of waves to the bottomrheology // 2015 International Conference on Mechanics Seventh Polyakhov’s Reading; Saint Petersburg State UniversitySt.Petersburg; Russian Federation; 2 February 2015 through 6February 2015; Category number CFP15A24-ART; Code 112290.[234] Kholodova S.E., Peregudin S.I. Wave equatorial dynamics inthe layer of electrically conducting liquids // 2015 InternationalConference on "Stability and Control Processes"in Memory of V.I.– 446 –Zubov, SCP 2015 - Proceedings 30 November 2015, Article number7342086, Pages 183-184. International Conference on "Stabilityand Control Processes"in Memory of V.I.
Zubov, SCP 2015; St.Petersburg; Russian Federation; 5 October 2015 through 9 October2015; Category number CFP15ZUV-ART; code 118393.[235] Kholodova S.E., Peregudin S.I. Modeling and analysis of thelarge scale magneto hydrodynamics waves // 2015 InternationalConference on "Stability and Control Processes"in Memory of V.I.Zubov, SCP 2015 - Proceedings 30 November 2015, Article number7342086, Pages 185-186 International Conference on "Stabilityand Control Processes"in Memory of V.I. Zubov, SCP 2015; St.Petersburg; Russian Federation; 5 October 2015 through 9 October2015; Category number CFP15ZUV-ART; code 118393.[236] Kholodova S.E., Peregudin S.I.
Kholodova S.E., Peregudin S.I.Wave dynamics with allowance of the bottom rheology // 2015International Conference on "Stability and Control Processes"inMemory of V.I. Zubov, SCP 2015 - Proceedings 30 November 2015,Article number 7342086, Pages 426-427. International Conferenceon "Stability and Control Processes"in Memory of V.I. Zubov, SCP2015; St. Petersburg; Russian Federation; 5 October 2015 through9 October 2015; Category number CFP15ZUV-ART; code 118393.[237] Kholodova S.E., Peregudin S.I., Peregudina E.S. Methods of nonsmooth analysis in problems of fluid dynamic // 2017 ConstructiveNonsmooth Analysis and Related Topics (Dedicated to the Memoryof V.F.
Demyanov), CNSA 2017 - Proceedings.[238] Kholodova S.E., Peregudin S.I., Peregudina E.S. Elements of nonsmooth analysis in the theory of waves // 2017 Constructive– 447 –Nonsmooth Analysis and Related Topics (Dedicated to the Memoryof V.F. Demyanov), CNSA 2017 - Proceedings.[239] Klemp J.B., Lilly D.K. Numerical simulation of hydrostaticmountain waves // J. Atmospheric.
Sci. 1978. Vol. 35. N 1. P. 78–107.[240] Langlois W.E. Slow viscous flow. New York, Macmillan, 1964.[241] Larmor J. British. Assoc. Reports. 1919. Vol. 159.[242] Lee J.D., Su C.H. A numerical method for stratified shear flows overa long obstacle // J. Geophys. Res. 1977. Vol. 82. N 3. P. 420–426.[243] Leighton R.B. A magneto-kinematic model of the Solar cycle //Astrophys. J. 1969.
- Vol. 156. -JVsl.-P. 1-26.[244] Lowes F.J., Wilkinson I. Geomagnetic dynamo: a laboratory model// Nature. 1963. Vol. 198. P. 1158–1160.[245] Lowes F.J., Wilkinson I. Geomagnetic dynamo: an improvedlaboratory model // Ibid. 1968. Vol. 219. P. 717–718.[246] Matthews P.C. Asymptotic solutions for nonlinear magnetoconvection // J. Fluid Mech. 1999. - Vol. 387. - P. 397-409.[247] Mestel L.
Stellar magnetism. Oxford Univ. Press, 2003. 636 p.[248] Munson B.R., Josef D.D. Viscous incompressible flow betweenconcentric rotating spheres. // J. Fluid Mech. 1971. Vol. 49. N 2.P. 289–303.[249] Neamtan S. The motion of harmonic waves in the atmosphere // J.Meteorol.
1946. Vol. 3. N 2.[250] Needler G.T. A model for thermocline circulation in an ocean offinite depth // J. Marine Res. 1967. Vol. 25. P. 329–342.– 448 –[251] Newell A.C., Passot Т., Souli M. The phase diffusion and meandrift equations for convection at finite Rayleigh numbers in largecontainers // J. Fluid Mech.
1990. Vol. 220. P. 187-552.[252] Nikitin N.V. A spectral finite-difference method of calculatingturbulent flows of an incompressible fluid in pipes and channels //Соmр. Maths Math. Phys. 1994. Vol. 34. P. 785-798.[253] Nikitin N.V. Finite-difference method for incompressible NavierStokes equations in arbitrary orthogonal curvilinear coordinates //J.
Сотр. Phys. 2006. Vol. 217. P. 759-781.[254] Pavliotis G.A., Stuart A.M. Multiscale methods. Averaging andhomogenization. Texts in applied mathematics. Vol. 53. N.Y.:Springer. 307 pp.[255] Pearson C.E. A numerical study of the time dependent viscous flowbetween two rotating spheres // J. Fluid Mech. 1967. Vol. 28. N 2.P. 323–336.[256] Peregudin S.I., KholodovasS.E.
Dynamics of a Rotating Layer ofan Ideal Electrically Conducting Incompressible InhomogeneousFluid in an Equatorial Region // Computational Mathematics andMathematical Physics. 2010. Vol. 50, № 11, pp. 1871–1885.[257] Peregudin S.I., Kholodovas S.E. Specific features of propagationof unsteady waves in a rotating spherical layer of an idealincompressible stratified electro conducting fluid in the equatoriallatitude belt // Journal of Applied Mechanics and TechnicalPhysics, Vol.
52, No. 2, pp. 193-199, 2011.[258] Plunian F., Radler K.-H. Harmonic and subharmonic solutionsof the Roberts dynamo problem. Application to the Karlsruheexperiment // Magnetohydrodynamics. 2002. - Vol. 38. - P. 95-106.– 449 –[259] Podvigina O.M.
Instability of flows near the onset of convection ina rotating layer with stress-free horizontal boundaries // Geophys.Astrophys. Fluid Dynam. 2008. Vol. 102. P. 299-326.[260] Ponty Y., Pouquet A., Rom-Kedar A., Sulem P.L. Dynamo actionin a nearly integrable chaotic flow // Solar and planetary dynamos/ Eds. M.R.E.
Proctor, P.C. Matthews, A.M. Rucklidge. CambridgeUniv. Press, 1993. - P. 241-248.[261] Ponty Y., Pouquet A., Sulem P.L. Dynamos in weakly chaotic twodimensional flows // Geophys. Astrophys. Fluid Dynam. 1995. -Vol.79. - P. 239-257.[262] Proudman I. The almost-rigid rotating of viscous fluid betweenconcentric spheres // J. Fluid Mech. 1956. Vol. 1. N 5. P. 505–519.[263] Ritter C.F. Berechnung der Strömung im Spalt zwischen zweikonzentrischen rotierenden // Kugelflächen. Z. Angew.