Диссертация (1145260), страница 53
Текст из файла (страница 53)
Math. UndMech. 1973. Vol. 53. N 4.[264] Roberts P.H. Dynamo theory of geomagnetism, in World MagneticSurvey 1957–1969. Ed. by A.J. Zmuda // IAGA Bull. 28, IUGGPubl. Off. Paris, 1971.[265] Roberts P.H., Soward A.M. Magnetohydrodynamics of the earth’score // Ann. Rev. Fluid Mech. 1972. Vol. 4. P.
117–154.[266] Roberts P.H., Stewartson K. On finite amplitude convection in arotating magnetic system // Philos. Trans. R. Soc. Lond. Ser. AMath. Phys. Eng. Sci. 1974. Vol. 277. P. 287–315.[267] Roberts P.H., Stewartson K. Double roll convection in a rotatingmagnetic system // J. Fluid. Mech. 1975.
Vol. 68. P. 447–466.[268] Robinson A.R., Stommel H. The oceanic thermocline and theassociated thermohaline circulation // Tellus, 1959, 11, P. 295–308.– 450 –[269] Roesner K.G. Numerical calculation of hydrodynamic stabilityproblems with time-dependent boundary conditions // 6–я Междунар. конф. по числ. методам в гидродинам.: Сб. докл. Тбилиси,1978. Т.
1.[270] Rossby C.G., et al. Relation between variations in the intensity ofthe zonal circulation of the atmosphere and the displacement of thesemi-permanent centers of action // J. Marine Res. 1939. Vol. 2. P.38–55.[271] Sarson G.R., Jones C.A. A convection driven geodynamo reversalmodel // Phys. Earth Planet. Inter.
1999. Vol. 111. P. 3-20.[272] Soward A.M. A convection driven dynamo I. The weak field case //Phil. Trans. Roy. Soc. Lond. 1974. Vol. A275. P. 611-651.[273] Soward A.M. Non-linear marginal convection in a rotating magneticsystem // Geophys. Astrophys. Fluid Dyn. 1988. Vol. 44. P. 91–116.[274] Starr V.P. Physics of negative viscosity phenomena.
N.Y.: McGrawHill. 1968. 256 p.[275] Stellmach S., Hansen U. Cartesian convection driven dynamos atlow Ekman number // Phys. Rev. E. 2004. Vol. 70.[276] Stokes G.G. On the theory of oscillatory waves // Cambridge Tractsin Math. 1847. Vol.
8. P. 1–212.[277] Stokes G.G. On the theory of oscillatory waves // Math. And Phys.Papers. 1880. Vol. 1. P. 197–229.[278] Stokes G.G. Sapplement to a paper on the theory of oscillatorywaves // Ibid. 1880. Vol. 1. P. 314–326.– 451 –[279] Tilgner A., Busse F.H. Simulation of the bifurcation diagram ofthe Karlsruhe dynamo // Magnetohydrodynamics. 2002.
Vol. 38. P.35-40.[280] Vainshtein S.I., Cattaneo F. Nonlinear restrictions on dynamoaction // Astrophys. J. 1992. Vol. 393. P. 165-171.[281] Zhang K. K., Busse F.H. Finite amplitude convection and magneticfield generation in a rotating spherical shell // Geophys. Asrophys.Fluid Dyn. 1988. Vol. 44. P. 33–54.[282] Zhang K. K., Busse F.H. Convection driven magnetohydrodynamicdynamos in a rotating spherical shell // Ibid. 1989.
Vol. 49. P. 97–116.[283] Zhang K. K., Busse F.H. Generation of magnetic fields byconvection in a rotating spherical fluid shell of infinite Prandtlnumber // Phys. Earth Planet. Inter. 1990. Vol. 59. P. 208–222.[284] Zhang K., Jones C.A. The effect of hyperviscosity on geodynamomodels // Geophys. Res. Lett. 1997. Vol.
24. P. 2869-2872.[285] Zheligovsky V.A. A kinematic magnetic dynamo sustained by aBeltrami flow in a sphere // Geophys. Astrophys. Fluid Dynam.1993. Vol. 73. P. 217-254.[286] Zheligovsky V.A., Podvigina O.M., Frisch U. Dynamo effect inparity-invariant flow with large and moderate separation of scales// Geophys. Astrophys. Fluid Dynam.
2001. - Vol. 95. - P. 227-268..