Диссертация (1143463), страница 33
Текст из файла (страница 33)
Lühring H., Tazawa M. Effect of cytoplasmic Ca2+ on the membranepotential and membrane resistance of Chara plasmalemma // Plant andCell Physiology. 1985. Vol. 26. P. 635–646.85. Shimmen T., Tazawa M. Dependency of + efflux on ATP in cellsof Chara australis // Plant and Cell Physiology.1980.Vol.
21.P. 1007–1013.86. Tazawa M. Cell physiological aspects of the plasma membraneelectrogenic H+ pump // Journal of Plant Research. 2003. Vol. 116.P. 419–442.87. Tazawa M. Light-induced changes in membrane potential andcytoplasmic pH in aquatic plants, Egeria and Chara // Research inPhotosynthesis. 1992. Vol. 4. P. 723–726.88. Mimura T., Kirino Y. Changes in cytoplasmic pH measured by31P-NMR in cells of Nitellopsis obtusa // Plant and Cell Physiology.1984.
Vol. 25. P. 813–820.89. Johannes E., Crofts A., Sanders D. Control of Cl− efflux in Characorallina by cytosolic pH, free Ca2+ , and phosphorylation indicates arole of plasma membrane anion channels in cytosolic pH regulation //Plant Physiology. 1998. Vol. 118. P.
173–181.90. Toko K., Chosa H., Yamafuji K. Dissipative structure in the Characea:238Spatial pattern of proton flux as a dissipative structure in characeancells // Journal of Theoretical Biology. 1985. Vol. 114. P. 125–175.91. Toko K., Hayashi K., Yoshida T.
et al. Oscillations of electric spatialpatterns emerging from the homogeneous state in characean cells //European Biophysics Journal. 1988. Vol. 16. P. 11–21.92. Leonetti M., Pelce P. On the theory of pH bands in characean algae //Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie.1994. Vol. 317. P. 801–805.93. Shabala S., Newman I. Light-induced changes in hydrogen, calcium,potassium, and chloride ion fluxes and concentrations from themesophyll and epidermal tissues of bean leaves.
Understanding the ionicbasis of light-induced bioelectrogenesis // Plant Physiology. 1999. Vol.119. P. 1115–1124.94. Živanović B. D., Pang J., Shabala S. Light-induced transient ion fluxresponses from maize leaves and their association with leaf growth andphotosynthesis // Plant, Cell & Environment.
2005. Vol. 28. P. 340–352.95. HansenU.-P.,KolbowskiJ.,DauH.Relationshipbetweenphotosynthesis and plasmalemma transport // Journal of ExperimentalBotany. 1987. Vol. 38. P. 1965–1981.96. Foissner I., Sommer A., Hoeftberger M. Photosynthesis-dependentformation of convoluted plasma membrane domains in Chara //Protoplasma. 2015. Vol. 252. P. 1085–1096.97.
Bulychev A. A. Membrane excitation and cytoplasmic streaming asmodulators of photosynthesis and proton flows in Characean cells //Plant Electrophysiology. Springer, 2012. P. 273–300.98. Jacklet J. W., Rolerson C. Electrical activity and structure of retinalcells of the Aplysia eye: II. Photoreceptors // Journal of ExperimentalBiology.
1982. Vol. 99. P. 381–395.23999. Tamamaki N. Visible light reception of accessory eye in the giantsnail, Achatina fulica, as revealed by an electrophysiological study //Zoological Science. 1989. Vol. 6. P. 867–875.100. Sakakibara M., Aritaka T., Iizuka A. et al. Electrophysiologicalresponses to light of neurons in the eye and statocyst of Lymnaeastagnalis // Journal of Neurophysiology. 2005. Vol. 93.
P. 493–507.101. Шарко Н. В., Осипов Б. С. Электрические реакции глаза и оптического нерва прудовика Lymnaea stagnalis // Нейрофизиология.1981. Т. 13. С. 652–654.102. Stoll C. J., Bijlsma A. Optic nerve activity in Lymnaea stagnalis (L.)to photic stimulation of the eye // Proc. Kon. Ned. Akad.
Wet. 1973.Vol. 76. P. 406–413.103. Жуков В. В., Грибакин Ф. Г. Спектральная чувствительность глазамоллюсков Lymnaea stagnalis и Planorbarius corneus в ультрафиолетовой и видимой области спектра // Сенсорные системы. 1990. Т. 4.С. 341–350.104. Жуков В. В. К вопросу о медиаторах сетчатки пресноводного моллюска Lymnaea stagnalis L. // Ж. эвол. биохим. и физиол. 2007.Т.
43. С. 440–447.105. Bunning E. Physiological Clock: Circadian Rhythms and BiologicalChronometry. Springer, 1973.106. Turek F. W. Circadian rhythms // Hormone Research in Paediatrics.1998. Vol. 49. P. 109–113.107. Norbury C., Nurse P. Cyclins and cell cycle control // Current Biology.1991. Vol. 1. P.
23–24.108. Tyson J. J., Novak B. Regulation of the eukaryotic cell cycle: molecularantagonism, hysteresis, and irreversible transitions // Journal ofTheoretical Biology. 2001. Vol. 210. P. 249–263.240109. Hauser M. J. B., Olsen L. F. Mixed-mode oscillations and homoclinicchaos in an enzyme reaction // Journal of the Chemical Society –Faraday Transactions. 1996. Vol. 92. P. 2857–2863.110. Olsen L. F., Hauser M.
J. B., Kummer U. Mechanism of protection ofperoxidase activity by oscillatory dynamics // FEBS Journal. 2003.Vol. 270. P. 2796–2804.111. Ghosh A., Chance B. Oscillations of glycolytic intermediates in yeastcells // Biochemical and Biophysical Research Communications. 1964.Vol. 16. P. 174–181.112. Richard P., Teusink B., Westerhoff H. V., van Dam K.
Around thegrowth phase transition S. cerevisiae’s make-up favours sustainedoscillations of intracellular metabolites // FEBS letters. 1993. Vol.318. P. 80–82.113. O’Rourke B., Ramza B. M., Romashko D. N., Marban E. Metabolicoscillations in heart cells // Molecular and Subcellular Cardiology.Springer, 1995. P. 165–174.114. Corkey B. E., Tornheim K., Deeney J. T. et al. Linked oscillations of freeCa2+ and the ATP/ADP ratio in permeabilized RINm5F insulinomacells supplemented with a glycolyzing cell-free muscle extract // Journalof Biological Chemistry. 1988. Vol. 263.
P. 4254–4258.115. Frenkel R. Reduced diphosphopyridine nucleotide oscillations in cell-freeextracts from beef heart // Archives of Biochemistry and Biophysics.1966. Vol. 115. P. 112–121.116. Chance B., Hess B., Betz A. DPNH oscillations in a cell-free extract of S.carlsbergensis // Biochemical and biophysical research communications.1964. Vol. 16. P.
182–187.117. Tornheim K., Lowenstein J. M. The Purine Nucleotide Cycle III.Oscillations in metabolite concentrations during the operation of the241cycle in muscle extracts // Journal of Biological Chemistry. 1973. Vol.248. P. 2670–2677.118. Hess B. Periodic patterns in biochemical reactions // Quarterly Reviewsof Riophysics. 1997. Vol. 30. P. 121–176.119. Lechleiter J., Girard S., Peralta E., Clapham D. Spiral calcium wavepropagation and annihilation in Xenopus laevis oocytes // Science.1991. P.
123–126.120. Basarsky T. A., Duffy S. N., Andrew R. D., MacVicar B. A. Imagingspreading depression and associated intracellular calcium waves in brainslices // Journal of Neuroscience. 1998. Vol. 18. P. 7189–7199.121. Dahlem M. A., Müller S. C.
Self-induced splitting of spiral-shapedspreading depression waves in chicken retina // Experimental BrainResearch. 1997. Vol. 115. P. 319–324.122. Dahlem Y. A., Dahlem M. A., Mair T. et al. Extracellular potassiumalters frequency and profile of retinal spreading depression waves //Experimental Brain Research. 2003. Vol. 152. P. 221–228.123. Tomchik K.
J., Devreotes P. N. Adenosine 3’, 5’-monophosphatewaves in Dictyostelium discoideum: a demonstration by isotopedilution–fluorography // Science. 1981. Vol. 212. P. 443–446.124. Polezhaev A. A., Hilgardt C., Mair T., Müller S. C. Transition froman excitable to an oscillatory statein Dictyostelium discoideum // IEEProceedings-Systems Biology. 2005. Vol.
152. P. 75–79.125. Hilgardt C., Čejková J., Hauser M. J. B., Ševcı́ková H. Streamlessaggregation of Dictyostelium in the presence of isopropylidenadenosin //Biophysical chemistry. 2008. Vol. 132. P. 9–17.126. Petty H. R., Worth R. G., Kindzelskii A. L. Imaging sustaineddissipative patterns in the metabolism of individual living cells //Physical Review Letters. 2000. Vol. 84. P.
2754–2757.242127. Mair T., Müller S. C. Propagating waves of biological activity //Recent research developments in biophysical chemistry. 2000. Vol. 1.P. 105–121.128. Mair T., Müller S. C. Traveling NADH and proton waves duringoscillatory glycolysis in vitro // Journal of Biological Chemistry. 1996.Vol. 271. P. 627–630.129. Bagyan S., Mair T., Dulos E. et al. Glycolytic oscillations andwaves in an open spatial reactor: Impact of feedback regulation ofphosphofructokinase // Biophysical Chemistry.2005.Vol.
116.P. 67–76.130. Higgins J. A chemical mechanism for oscillation of glycolyticintermediates in yeast cells // Proceedings of the National Academyof Sciences USA. 1964. Vol. 51. P. 989–994.131. Sel’kov E. Self-Oscillations in Glycolysis // European Journal ofBiochemistry. 1968. Vol. 4. P. 79–86.132. Goldbeter A. Patterns of spatiotemporal organization in an allostericenzyme model // Proceedings of the National Academy of SciencesUSA.
1973. Vol. 70. P. 3255–3259.133. Teusink B., Bakker B. M., Westerhoff H. V. Control of frequency andamplitudes is shared by all enzymes in three models for yeast glycolyticoscillations // Biochimica et Biophysica Acta (BBA) – Bioenergetics.1996. Vol. 1275. P. 204–212.134. Madsen M. F., Danø S., Sørensen P. G. On the mechanisms of glycolyticoscillations in yeast // FEBS Journal. 2005.
Vol. 272. P. 2648–2660.135. Wolf J., Passarge J., Somsen O. J. G. et al. Transduction of intracellularand intercellular dynamics in yeast glycolytic oscillations // BiophysicalJournal. 2000. Vol. 78. P. 1145–1153.136. Zhang L., Gao Q., Wang Q., Zhang X. Simple and complex243spatiotemporal structures in a glycolytic allosteric enzyme model //Biophysical Chemistry. 2007. Vol. 125. P. 112–116.137. Mair T., Warnke C., Müller S. C. Spatio-temporal dynamics inglycolysis // Faraday Discussions. 2002. Vol.
120. P. 249–259.138. Bagyan S., Mair T., Suchorski Y. et al. Spatial Desynchronization ofGlycolytic Waves as Revealed by Karhunen- Loève Analysis // Journalof Physical Chemistry B. 2008. Vol. 112. P. 14334–14341.139. Petty H. R., Kindzelskii A. L. Dissipative metabolic patterns respondduring neutrophil transmembrane signaling // Proceedings of theNational Academy of Sciences USA. 2001. Vol. 98. P. 3145–3149.140. Slaby O., Lebiedz D.
Oscillatory NAD(P)H waves and calciumoscillations in neutrophils? A modeling study of feasibility //Biophysical Journal. 2009. Vol. 96. P. 417–428.141. Lin Y.-M., Zhang G.-Z., Leng Z.-X. et al. Study on the bone marrowmesenchymal stem cells induced drug resistance in the U937 cells andits mechanism. // Chinese Medical Journal.