Диссертация (1143463), страница 37
Текст из файла (страница 37)
Saraga F., Wu C. P., Zhang L., Skinner F. K. Active dendritesand spike propagation in multicompartment models of orienslacunosum/molecularehippocampalinterneurons//JournalofPhysiology. 2003. Vol. 552. P. 673–689.291. Sauseng P., Klimesch W., Gruber W. R. et al. Are event-relatedpotential components generated by phase resetting of brain oscillations?A critical discussion // Neuroscience. 2007. Vol.
146. P. 1435–1444.292. Ermentrout G.B., Terman D. H. Mathematical Foundations ofNeuroscience. Springer, 2010.293. Ibarz B., Casado J. M., Sanjuán M. A. F. Map-based models in neuronaldynamics // Physics Reports. 2011. Vol. 501. P. 1–74.294. Galán R. F., Ermentrout G. B., Urban N. N. Efficient estimation ofphase-resetting curves in real neurons and its significance for neuralnetwork modeling // Physical review letters.
2005. Vol. 94. P. 158101.295. Achuthan S., Canavier C. C. Phase-resetting curves determinesynchronization, phase locking, and clustering in networks of neuraloscillators // Journal of Neuroscience. 2009. Vol. 29. P. 5218–5233.296. Hramov A. E., Koronovskii A. A., Makarov V. A. et al. WWavelet inneuroscience. Springer Berlin, 2015.297. Sheppard Lawrence, Stefanovska A, McClintock PVE. Detecting theharmonics of oscillations with time-variable frequencies // Phys. Rev.E. 2011.
Vol. 83. P. 016206.298. Postnov D. E., Neganova A. Y., Postnov D. D., Brazhe A. R. Monitoring260of rhythms in laser speckle data // Journal of Innovative Optical HealthSciences. 2014. Vol. 7. P. 1450015.299. Mallat S. A wavelet tour of signal processing. Academic press, 1999.300. Lebedeva E. A., Postnikov E. B. On alternative wavelet reconstructionformula: a case study of approximate wavelets // Royal Society OpenScience.
2014. Vol. 1. P. 140124.301. Traub R. D., Duncan R., Russell A. J. C. et al. Spatiotemporal patternsof electrocorticographic very fast oscillations (> 80 Hz) consistentwith a network model based on electrical coupling between principalneurons // Epilepsia. 2010. Vol. 51. P. 1587–1597.302. Belluscio M. A., Mizuseki K., Schmidt R. et al. Cross-frequencyphase–phase coupling between theta and gamma oscillations in thehippocampus // J.
Neurosci. 2012. Vol. 32. P. 423–435.303. Cunningham M. O., Roopun A., Schofield I. S. et al. Glissandi: transientfast electrocorticographic oscillations of steadily increasing frequency,explained by temporally increasing gap junction conductance //Epilepsia. 2012. Vol. 53. P. 1205–1214.304. O’Keefe J., Dostrovsky J.
The hippocampus as a spatial map.Preliminary evidence from unit activity in the freely-moving rat //Brain research. 1971. Vol. 34. P. 171–175.305. Hafting T., Fyhn M., Molden S. et al. Microstructure of a spatial map inthe entorhinal cortex // Nature. 2005. Vol. 436, no.
7052. P. 801–806.306. Burgess N., O’Keefe J. Models of place and grid cell firing and thetarhythmicity // Current opinion in neurobiology.2011.Vol. 21.P. 734–744.307. Buzsáki G., Moser E. I. Memory, navigation and theta rhythm in thehippocampal-entorhinal system // Nature neuroscience. 2013. Vol. 16.P. 130–138.261308. Moser M.-B., Moser E. I.
Where am I? Where am I going? Scientistsare figuring out how the brain navigates // Scientific American. 2016.Vol. 614. P. 26–33.309. Bush D., Barry C., Burgess N. What do grid cells contribute to placecell firing? // Trends in neurosciences. 2014. Vol. 37. P. 136–145.310. Krupic J., Burgess N., O’Keefe J. Neural representations of locationcomposed of spatially periodic bands // Science.2012.Vol. 337.P. 853–857.311.
Solstad T., Moser E. I., Einevoll G. T. From grid cells to place cells: amathematical model // Hippocampus. 2006. Vol. 16. P. 1026–1031.312. Postnikov E. B., Singh V. K. Local spectral analysis of imagesvia the wavelet transform based on partial differential equations //Multidimensional Systems and Signal Processing.2014.Vol. 25.P.
145–155.313. Borisyuk G. N., Borisyuk R. M., Khibnik A. I., Roose D. Dynamics andbifurcations of two coupled neural oscillators with different connectiontypes // Bulletin of Mathematical Biology. 1995. Vol. 57. P. 809–840.314.
Stolyarov M. N., Romanov V. A., Volkov E. I. Out-of-phase mixed-modeoscillations of two strongly coupled identical relaxation oscillators //Physical Review E. 1996. Vol. 54. P. 163–169.315. Bar-Eli K. Coupling of identical chemical oscillators // Journal ofPhysical Chemistry. 1990. Vol. 94. P. 2368–2374.316. Koseska A., Volkov E., Kurths J.
Transition from amplitude tooscillation death via Turing bifurcation // Physical Review Letters.2013. Vol. 111. P. 024103.317. Crowley M. F., Field R. J. Electrically coupled Belousov-Zhabotinskiioscillators. 1. Experiments and simulations // Journal of PhysicalChemistry. 1986. Vol. 90. P. 1907–1915.262318. Hocker C. G., Epstein I. R. Analysis of a four-variable model of coupledchemical oscillators // Journal of Chemical Physics.
1989. Vol. 90.P. 3071–3080.319. Lücken L., Yanchuk S., Popovych O. V., Tass P. A. Desynchronizationboost by non-uniform coordinated reset stimulation in ensembles ofpulse-coupled neurons // Frontiers in computational neuroscience. 2013.Vol. 7. P. 63.320. Cruz J. M., Escalona J., Parmananda P. et al. Phase-flip transition incoupled electrochemical cells // Physical Review E. 2010. Vol. 81.P. 046213.321. Toiya M., Vanag V. K., Epstein I. R. Diffusively coupled chemicaloscillators in a microfluidic assembly // Angewandte Chemie. 2008.Vol. 120. P.
7867–7869.322. Hardy G. H., Wright E. M. An introduction to the theory of numbers.Oxford University Press, 2008.323. Cutsuridis V., Graham B. P., Cobb S., Vida I. Hippocampalmicrocircuits: a computational modeler’s resource book.SpringerScience & Business Media, 2010.324. Hajós M., Hoffmann W. E., Orbán G. et al. Modulation of septohippocampal activity by GABA A receptors: An experimental andcomputational approach // Neuroscience. 2004. Vol.
126. P. 599–610.325. Epstein I. R., Pojman J. A. An introduction to nonlinear chemicaldynamics: oscillations, waves, patterns, and chaos. Oxford UniversityPress, 1998.326. Gray C. M., McCormick D. A. Chattering cells: superficial pyramidalneurons contributing to the generation of synchronous oscillations inthe visual cortex // Science. 1996.
Vol. 274. P. 109–113.327. Markram H., Toledo-Rodriguez M., Wang Y. et al. Interneurons of the263neocortical inhibitory system // Nature Reviews Neuroscience. 2004.Vol. 5. P. 793–807.328. Traub R. D., Bibbig A., LeBeau F. E. N. et al. Cellular mechanisms ofneuronal population oscillations in the hippocampus in vitro // Annu.Rev. Neurosci. 2004. Vol.
27. P. 247–278.329. Shao J., Lai D., Meyer U. et al. Generating oscillatory bursts from anetwork of regular spiking neurons without inhibition // Journal ofComputational Neuroscience. 2009. Vol. 27. P. 591–606.330. Koper M. T. M. Bifurcations of mixed-mode oscillations in a threevariable autonomous Van der Pol-Duffing model with a cross-shapedphase diagram // Physica D. 1995.
Vol. 80. P. 72–94.331. Koper M. T. M., Gaspard P. The modeling of mixed-mode and chaoticoscillations in electrochemical systems // Journal of Chemical Physics.1992. Vol. 96. P. 7797–7813.264.