Диссертация (1143463), страница 36
Текст из файла (страница 36)
P. 074101.238. Rayleigh. The Theory of Sound, vol. I. 1894.254239. Polyanin A., Manzhirov A. Handbook of Mathematics for Engineersand Scientists. CRC Press, 2007.240. Vanag V. K., Epstein I. R. Inwardly rotating spiral waves in a reactiondiffusion system // Science. 2001. Vol. 294. P. 835–837.241. Shao X., Wu Y., Zhang J. et al. Inward propagating chemical wavesin a single-phase reaction-diffusion system // Physical Review Letters.2008.
Vol. 100. P. 198304.242. Prigogine I., Lefever R. Symmetry breaking instabilities in dissipativesystems. II // Journal of Chemical Physics. 1968. Vol. 48. P. 1695–1700.243. Пригожин И. Время, структура и флуктуации // УФН. 1980. Т.131. С. 185–207.244. Трубецков Д.
И., Мчедлова Е. С., Красичков Л. В. Введение в теорию самоорганизации открытых систем. М: Физматлит, 2005.245. Рабинович М. И., Трубецков Д. И. Введение в теорию колебаний иволн. М.-Ижевск: РХД, 2001.246. LefeverR.,NicolisG.Chemicalinstabilitiesoscillations // Journal of Theoretical Biology.andsustained1971.Vol. 30.P. 267–284.247. LavendaB.,NicolisG.,Herschkowitz-KaufmanM.Chemicalinstabilities and relaxation oscillations // Journal of TheoreticalBiology.
1971. Vol. 32. P. 283–292.248. Knoke B., Marhl M., Perc M., Schuster S. Equality of average andsteady-state levels in some nonlinear models of biological oscillations //Theory in Biosciences. 2008. Vol. 127. P. 1–14.249. Ghosh S., Ray D. S. Chemical oscillator as a generalized Rayleighoscillator // Journal of Chemical Physics. 2013. Vol. 139. P. 164112.250. Ghosh S., Ray D. S.
Liénard-type chemical oscillator // EuropeanPhysical Journal B. 2014. Vol. 87. P. 65.255251. Postnikov E. B., Verveyko D. V., Verisokin A. Yu. Simple model fortemperature control of glycolytic oscillations // Physical Review E.2011. Vol. 83. P. 062901.252. Saha S., Gangopadhyay G. Isochronicity and limit cycle oscillation inchemical systems // Journal of Mathematical Chemistry. 2017. Vol. 55.P. 887–910.253.
Garcı́a-Morales V., Krischer K. The complex Ginzburg–Landauequation: an introduction // Contemporary Physics. 2012. Vol. 53.P. 79–95.254. Ландау Л. Д. К проблеме турбулентности // ДАН СССР. 1944.Т. 44. С. 339–342.255. Stuart J. T. On the non-linear mechanics of hydrodynamic stability //Journal of Fluid Mechanics. 1958. Vol. 4. P. 1–21.256. Cheok M. H., Pottier N., Kager L., Evans W.
E. Pharmacogeneticsin acute lymphoblastic leukemia // Semin. Hematol. 2009. Vol. 46.P. 39–51.257. Panetta J. C., Evans W. E., Cheok M. H. Mechanistic mathematicalmodelling of mercaptopurine effects on cell cycle of human acutelymphoblastic leukaemia cells // Br. J. Cancer.
2006. Vol. 94. P. 93–100.258. Jayachandran D., Rundell A. E., Hannemann R. E. et al. Optimalchemotherapy for leukemia: a model-based strategy for individualizedtreatment // PLoS ONE. 2014. Vol. 9. P. e109623.259. Hedeland R. L., Hvidt K., Nersting J. et al. DNA incorporation of6-thioguanine nucleotides during maintenance therapy of childhoodacute lymphoblastic leukaemia and non-Hodgkin lymphoma // CancerChemother.
Pharmacol. 2010. Vol. 66. P. 485–491.260. Dorababu P., Nagesh N., Linga V. G. et al. Epistatic interactionsbetweenthiopurinemethyltransferase256(TPMT)andinosinetriphosphatepyrophosphatase(ITPA)variationsdetermine6-mercaptopurine toxicity in Indian children with acute lymphoblasticleukemia // Eur. J. Clin. Pharmacol. 2012. Vol. 68. P. 379–387.261.
Daehn I., Brem R., Barkauskaite E., Karran P. 6-Thioguanine damagesmitochondrial DNA and causes mitochondrial dysfunction in humancells // FEBS Lett. 2011. Vol. 585. P. 3941–3946.262. Fernández-Ramos A. A., Poindessous V., Marchetti-Laurent C. et al.The effect of immunosuppressive molecules on T-cell metabolicreprogramming // Biochimie. 2016. Vol. 127. P.
23–36.263. Ogungbenro K., Aarons L. Physiologically based pharmacokineticmodelling of methotrexate and 6-mercaptopurine in adults and children.Part 2: 6-mercaptopurine and its interaction with methotrexate // J.Pharmacokinet. Pharmacodyn. 2014. Vol. 41. P. 173–185.264. Kurowski V., Iven H. Plasma concentrations and organ distribution ofthiopurines after oral application of azathioprine in mice // CancerChemother. Pharmacol. 1991. Vol. 28. P. 7–14.265.
Innocenti F., Fogli S., Di Paolo A., Del Tacca M. Metabolism of6-mercaptopurine in the erythrocytes, liver, and kidney of rats duringmultiple-dose regimens // Cancer Chemother. Pharmacol. 1999. Vol. 43.P. 133–140.266. Lennard L. The clinical pharmacology of 6-mercaptopurine // Eur. J.Clin. Pharmacol. 1992. Vol.
43. P. 329–339.267. Valente M. J., Arajo A. M., de Lourdes B. et al. Characterization ofhepatotoxicity mechanisms triggered by designer cathinone drugs (-ketoamphetamines) // Toxicol. Sci. 2016. Vol. 153. P. 89–102.268. Flohr T.et al.Minimal residual disease-directed risk stratificationusing real-time quantitative PCR analysis of immunoglobulin and T-cellreceptor gene rearrangements in the international multicenter trial257AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia //Leukemia.
2008. Vol. 22. P. 771–782.269. Glass L., Kauffman S. A. The logical analysis of continuous, non-linearbiochemical control networks // J. Theoret. Biol.1973.Vol. 39.P. 103–129.270. Karlebach G., Shamir R. Modelling and analysis of gene regulatorynetworks // Nat. Rev. Mol. Cell Biol.
2008. Vol. 9. P. 770–780.271. Wang R. S., Saadatpour A., Albert R. Boolean modeling in systemsbiology: an overview of methodology and applications // Phys. Biol.2012. Vol. 9. P. 055001.272. Le Novére N. Quantitative and logic modelling of molecular and genenetworks // Nat. Rev. Genet. 2015. Vol. 16. P. 146–158.273. Davidich M. I., Bornholdt S. Boolean network model predicts knockoutmutant phenotypes of fission yeast // PLoS ONE.2013.Vol. 8.P. e71786.274.
Fisher J., Henzinger T. A. Executable cell biology // Nat. Biotechnol.2007. Vol. 25. P. 1239–1249.275. Shmulevich I., Dougherty E. R., Kim S., Zhang W. ProbabilisticBoolean networks: a rule-based uncertainty model for gene regulatorynetworks // Bioinformatics. 2002. Vol. 18. P. 261–274.276. Beuster G., Zarse K., Kaleta C. et al. Inhibition of alanineaminotransferase in silico and in vivo promotes mitochondrialmetabolism to impair malignant growth // J. Biol. Chem. 2011.
Vol.286. P. 22323–22330.277. Guertl B., Noehammer C., Hoefler G. Metabolic cardiomyopathies //Int. J. Exp. Pathol. 2000. Vol. 81. P. 349–372.278. Lavrova A. I., Postnikov E. B. Discrete Modeling for a MinimalCircuit in the Hippocampus // Complexity and Synergetics / Ed. by258S. C. Müller, P. J. Plath, G. Radons, A. Fuchs. Springer, 2018.279. FitzHugh R. Mathematical models of excitation and propagation innerve // Biological Engineering / Ed. by H. P. Schwan. McGraw-HillBook Co., 1969. P.
1–85.280. Hennig D., Schimansky-Geier L. Implications of heterogeneous inputsand connectivity on the synchronization in excitable networks //Physica A. 2008. Vol. 387. P. 967–981.281. Buzsáki G. Theta oscillations in the hippocampus // Neuron. 2002.Vol. 33. P. 325–340.282. Maccaferri G., McBain C. J. The hyperpolarization-activated current(Ih) and its contribution to pacemaker activity in rat CA1 hippocampalstratum oriens-alveus interneurones. // Journal of Physiology. 1996.Vol. 497. P.
119–130.283. Gillies M. J., Traub R. D., LeBeau F. E. N. et al. A Model of AtropineResistant Theta Oscillations in Rat Hippocampal Area CA1 // Journalof Physiology. 2002. Vol. 543. P. 779–793.284. Brons M., Kaper T. J., Rotstein H. G. Mixed Mode Oscillations:Experiment, Computation, and Analysis // Focus Issue of Chaos. 2008.Vol. 18.285. Klausberger T., Somogyi P. Neuronal diversity and temporal dynamics:the unity of hippocampal circuit operations // Science. 2008. Vol.
321.P. 53–57.286. Lubenov E. V., Siapas A. G. Hippocampal theta oscillations aretravelling waves // Nature. 2009. Vol. 459. P. 534–539.287. Belluscio M. A., Mizuseki K., Schmidt R. et al. Cross-frequencyphase–phase coupling between theta and gamma oscillations in thehippocampus // Journal of Neuroscience. 2012. Vol. 32. P.
423–435.288. Kass J. I., Mintz I. M. Silent plateau potentials, rhythmic bursts, and259pacemaker firing: three patterns of activity that coexist in quadristablesubthalamic neurons // Proceedings of the National Academy ofSciences USA. 2006. Vol. 103. P. 183–188.289. Sasaki T., Matsuki N., Ikegaya Y. Metastability of active CA3networks // Journal of Neuroscience. 2007. Vol. 27. P. 517–528.290.