Ю.И. Афанасьев, Н.А. Юрина - Гистология, цитология и эмбриология (1135295), страница 20
Текст из файла (страница 20)
спгоша — цвет, краска). Такими же свойствами обладают и хромосомы, которые отчетливо видны как плотные окрашивающиеся тельца во время митотического деления клеток. В неделящихся (интерфазных) клетках хроматин, выявляемый в световом микроскопе, может более или менее равномерно заполнять объем ядра или же располагаться отдельными глыбками. В состав хроматина входит ДНК в комплексе с белками. Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации хромосом и их участков морфологи называют эухроматином (евс)погпаг(пшп). При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина, иногда называемого гетерохроматином (пегегос)тгогпаг(пшп). Степень деконденсации хромосомного материала — хроматина в интерфазе может отражать функциональную нагрузку этой структуры.
Чем «диффузнее» распределен хроматин в интерфазном ядре, тем интенсивнее в нем синтетические процессы. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец — хромосом. В этот период хромосомы не выполняют никаких синтетических функций, в них не происходит включения предшественников ДНК и РНК.
Таким образом, хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.
Наблюдения за структурой хроматина с помощью электронного микроскопа показали, что как в препаратах выделенного интерфазного хрома- тина или выделенных митотических хромосом, так и в составе ядра на ультратонких срезах всегда видны элементарные хромосомные фибриллы толщиной 20 — 25 нм. В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов (ДНП), в состав которых входят ДНК и специальные хромосомные белки — гистоновые и негистоновые. В составе хроматина обнаруживается также РНК. Количественные отношения ДНК, белка и РНК составляют 1:1,3:0,2. Обнаружено, что длина индивидуальных линейных молекул ДНК может достигнуть сотен микрометров и даже сантиметров.
Среди хромосом человека самая большая первая хромосома содержит ДНК с общей длиной до 4 см. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6 10 " г. В хромосомах существует множество мест независимой репликации, т.е. удвоения ДНК вЂ” ренликоное. ДНК эукариотических хромосом представляют собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. В составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы.
Синтез ДНК как на участках отдельной хромосомы, так и среди разных 78 хромосом идет неодновременно, асинхронно. Так, например, в некоторых хромосомах человека (1, 3, 16) репликация наиболее интенсивно начинается в плечах хромосом и заканчивается (при высокой интенсивности включения метки) в центромерном районе (см.
ниже). Наиболее поздно репликация заканчивается в хромосомах или в их участках, находящихся в компактном, конденсированном состоянии. Таким примером может являться поздняя репликация генетически инактивированной Х-хромосомы у женшин, формирующей в ядре компактное тельце полового хроматина. Белки хроматина составляют 60 — 70 % от его сухой массы. К ним относятся так называемые гистоны и негистоновые белки. Негистоновые белки составляют 20 % от количества гистонов.
Гистоны — щелочные белки, обогащенные основными аминокислотами (главным образом лизином и аргинином). Очевидна структурная роль гистонов, которые не только обеспечивают специфическую укладку хромосомной ДНК, но и имеют значение в регуляции транскрипции. Гистоны расположены по длине молекулы ДНК не равномерно, а в виде блоков. В один такой блок входят 8 молекул гистонов, образуя так называемую нуклеосому. Размер нуклеосомы около 10 нм. При образовании нуклеосом происходит компактизация, сверхспирализация ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 7 раз. Сама же хромосомная фибрилла имеет вид нитки бус или четок, где каждая бусина — нуклеосома. Такие фибриллы толщиной 10 нм дополнительно продольно конденсируются и образуют основную элементарную фибриллу хроматина толщиной 25 нм.
В интерфазе фибриллы хроматина образуют петли. Эти петли собраны в розетки, где основания нескольких петель связаны друг с другом негистоновыми белками ядерного матрикса. Такие петлевые группы (петлевые домены) при падении активности хроматина могут конденсироваться, уплотняться, образуя так называемые хромомеры или хромоцентры интерфазных ядер. Хромомеры выявляются также в составе митотических хромосом. В ядрах, кроме хроматиновых участков и матрикса, обнаруживаются перихроматиновые фибриллы, перихроматиновые и интерхроматиновые гранулы.
Они содержат РНК и встречаются практически во всех активных ядрах, представляют собой информационные РНК, связанные с белками, — рибонуклеопротеиды (информосомы). Матрицами для синтеза этих РНК являются разные гены, разбросанные по деконденсированным участкам хромосомных (хроматиновых) фибрилл. Особый тип матричной ДНК, а именно ДНК для синтеза рибосомной РНК, собран обычно в нескольких компактных участках, входящих в состав ядрышек интерфазных ядер. Ядрышко Практически во всех живых клетках эукариотических организмов в ядре видно одно или несколько обычно округлой формы телец величиной 1 — 5 мкм, сильно преломляющих свет, — это ядрышко, или нуклеола (пис!ео1цв).
К общим свойствам ядрышка относится способность хорошо окрашиваться различными красителями, особенно основными. Такая базофилия определяется тем, что ядрышки богаты РНК. Ядрышко — самая плотная структура ядра — является производным хромосомы, одним из ее 77 покусов с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Оно не является самостоятельной структурой или органеллой. В настоящее время известно, что ядрышко — это место образования рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей в цитоплазме. Образование ядрышек и их число связаны с активностью и числом определенных участков хромосом — ядрышковых организаторов, которые расположены большей частью в зонах вторичных перетяжек; количество ядрышек в клетках данного типа может изменяться за счет слияния ядрышек или за счет изменения числа хромосом с ядрышковыми организаторами.
ДНК ядрышкового организатора представлена множественными (несколько сотен) копиями генов рРНК: на каждом из этих генов синтезируется высокомолекулярный предшественник РНК, который превращается в более короткие молекулы РНК, входящие в состав субъединиц рибосомы. Схему участия ядрышек в синтезе цитоплазматических белков можно представить следующим образом: на ДНК ядрышкового организатора образуется предшественник рРНК„который в зоне ядрышка одевается белком, здесь происходит сборка рибонуклеопротеидных частиц — субъединиц рибосом; субъединицы, выходя из ядрышка в цитоплазму, организуются в рибосомы и участвуют в процессе синтеза белка.
Ядрышко неоднородно по своему строению: в световом микроскопе можно видеть его тонковолокнистую организацию. В электронном микроскопе выявляются два основных компонента: гранулярный и фибриллярный (рис. 22, Б). Диаметр гранул около 15 — 20 нм, толщина фибрилл — 6 — 8 нм.
Фибриллярный компонент может быть сосредоточен в виде центральной части ядрышка, а гранулярный — по периферии. Часто гранулярный компонент образует нитчатые структуры — нуклеолонемы толщиной около 0,2 мкм. Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы — созревающие субьединицы рибосом. В зоне фибрилл можно выявить участки ДНК ядрышковых организаторов. Они представлены так называемыми фибриллярными центрами, по периферии которых происходит синтез рРНК.
Ультраструктура яарышек зависит от активности синтеза РНК: при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается, ядрышки превращаются в плотные фибриллярные тельца базофильной природы. Действие многих веществ (актиномицин, митомицин, ряд канцерогенных углеводородов, циклогексимид, гидрооксимочевина и др.) вызывает в клетках падение интенсивности ряда синтезов и в первую очередь активности ядрышек. При этом возникают изменения в структуре ядрышек: их сжатие, обособление фибриллярных и гранулярных зон, потеря гранулярного компонента, распад всей структуры. Эти изменения отражают степень повреждения ядрышковых структур, связанных главным образом с подавлением синтеза рРНК.