Главная » Просмотр файлов » Х. Гюнтер - Введение в курс спетроскопии ЯМР

Х. Гюнтер - Введение в курс спетроскопии ЯМР (1125880), страница 20

Файл №1125880 Х. Гюнтер - Введение в курс спетроскопии ЯМР (Х. Гюнтер - Введение в курс спетроскопии ЯМР) 20 страницаХ. Гюнтер - Введение в курс спетроскопии ЯМР (1125880) страница 202019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 20)

Это приведет к уменьшению коэффициентов CIH и CНо сумма коэффициентов при атомных орбиталях, участвуйщих в образовании молекулярных орбиталей, должна ост!ваться постоянной. Поэтому при уменьшении с\н и с\н коЛфициенты в симметричной разрыхляющей орбитали Сгн и121должны увеличиться. В соответствии с уравнениями (IV. 20) и(IV. 19) вклад В в геминальную константу при этом уменьшится, а вклад С возрастет. Вклады А и D в первом приближении останутся без изменений. Разность энергий E3—E2меньше, чем £ 4 —EI. Поэтому увеличение вклада С превали2рует и J становится более положительной.

Это и наблюдаетсяэкспериментально (табл. IV. 10). Очевидно, что тем же путеммы придем для заместителя с -f- /-эффектом к противоположному предсказанию.Рассуждая тем же способом, можно предсказать, что в случае гиперконъюгативного взаимодействия с акцептором электронов уменьшится вклад С и увеличится вклад S, а вклады А и Dв первом приближении опять не изменяется. Но из-за меньшейразности энергий изменения вклада С будут иметь большеезначение и константа взаимодействия станет более отрицательной.

Это также подтверждается экспериментально (табл.IV. 10, рис. IV. 21). Резкое увеличение величины геминальнойконстанты в формальдегиде представляет особенно впечатляющий пример применимости простой МО-модели. Здесь — /-эффект атома кислорода и гиперконъюгативный перенос зарядас несвязывающих орбитателей неподеленных электронных пар нагруппу CH2 усиливают друг друга. Аналогичным образом гиперконъюгация в циклических простых эфирах приводит к положительным изменениям 2/. Наконец, с этих позиций становится понятной и описанная выше конформационная зависимость влияния л-связей и свободных электронных пар на 2J.Их электронное взаимодействие с орбиталью Ws определяетсявеличиной COs^, где ф—угол между осью z и осью орбитализаместителя.2.2. Вицинальная константа спин-спиновоговзаимодействия (3J)Сведения о вицинальных константах спин-спинового взаимодействия и об их взаимосвязи с химическим строением весьма обширны.

В согласии с теоретическими расчетами былопоказано, что величина 3/, знак которой, как ранее было уста?новлено, всегда положителен, в основном определяется четырьмя факторами: 1) двугранным углом ф между рассматриваемыми С—Н-связями (а); 2) длиной связи R^ (б); 3) валентными углами 9 и 0' (в); 4) электроотрицательностью заместителя R во фрагменте Н—С—С—H (г).H6Связь химического сдвига со строением молекул122123Глава IVТаблица IV. 11. Зависимость вицинальной константы спин-спинового взаимодействия (Гц) от двугранного углаHс=сH3CCNH3CHсоон40°60°80°°\H15,80100° 120° 140° 1 6 O I o O '12,33,9Рис. IV. 23.

Кривая Карплуса — Конроя, описывающая зависимость вициналь3ной константы спин-спинового взаимодействия / Н н от двугранного угла ф.Сплошная линия — теоретическая кривая; заштрихованная площадь — область экспериментальных значений.(2Vlгош2.2.1. Зависимость от двугранного угла. Зависимость вицинальной константы спин-спинового взаимодействия от двугранного угла ф была впервые теоретически предсказана Карплусоми Конроем. Она представлена на рис. IV.23.

Эта кривая описывается соотношением (IV. 22), где постоянные А, В и С равны4,22, — 0,5 и 4,5 соответственно. Экспериментальные данные каз/ = А + В cos ф + С cos 2<j>(IV. 22)чественно хорошо согласуются с расчетами, проведенными дляфрагмента H—С—С—H. Однако эксперимент показывает, чтозначения 3 / н н для ф = О и 180° в общем на 2—4 Гц больше, чемрассчитанные, хотя теоретически предсказанное соотношение3/i8o° > 3/о0 всегда подтверждается.

Поэтому для уравнения(IV. 22) были предложены эмпирические постоянные /4 = 7,B = — 1 и С = 5. Кривая Карплуса — Конроя объясняет рядважных закономерностей (табл. IV. 11). Например, в олефиновых системах спин-спиновое взаимодействие между граис-протонами всегда больше, чем между цыс-протонами. Поэтому легкоразличать цис- и транс-изомеры. Для 1,2-дизамещенных этановсправедливо соответствующее соотношение /гош < Jтранс. Вследствие этого в кресловидной конформации циклогексана взаимодействие между двумя аксиальными протонами больше, чеммежду двумя экваториальными или между аксильными и экваториальными (Jaa > Jea ~ ]ее).

Эта ЗЗКОНОМерНОСТЬ ИСПОЛЬЗубТся как важный критерий в конформационном анализе производных циклогексана и Сахаров. Так, в р-сЬорме глюкозы аномерный•/2«9,0-12,013троне3,212,3H3,811,28,0COOR/У 3//*9,0)0,°3,39,3COOR4,0=JJCOOR743,0COOHC6H5xг 20°н16,011,0ООНCN)с=с<Связь химического сдвига со строением молекулГлава IV125заместителейпренебрежимо мало, линейное соотношение(IV. 23) можно рассматриватькак следствие изменений длинысвязи С--С. Значения 3 /нн,з/ = - 35,1OR11V + 56,65(IV. 23)таким образом, очень чувствительны к малым различиям вдлинах связей С—С. Если другие факторы постоянны, с ихпомощью можно получить сведения о степени альтернированиясвязей в циклических п-системах. Поскольку в теории МО порядок связи линейно коррелирует с длиной связи R^, существует также линейное соотношение между порядками связиP^ и значениями 3 /.

Для ароматических соединений бензольного ряда выполняется уравнение (IV. 24). Такие же соотноше3/ = 12,47 P^-0,71(IV.24)ния были выведены и для плоских пяти- и семичленных циклов, но из-за различия валентных углов HCC в этих циклахв них другие коэффициенты.Пятичленные циклы: 3 /= 7,12P^n, — 1,180,132(IV.

25)33Рис. IV. 24. Соотношение между вицинальной константой Унн и длиной связR^v в ненасыщенных шестичленных кольцах (Павличек, Гюнтер [11])./ — нафталин;V — антрацен;Vl — ч"с-5,6-диметилциклогексадиен-1,3;VII — бензол;VIU — фенантрен; IX — бифенилен; X — бензоциклобутен; XI — циклогексен:; XIIтрицикло[4.3.1.0 1 -6] декадиен-2,4.протон не только сильнее экранирован, что уже отмечалось (смразд.

1.3), но и имеет большую вицинальную константу, чем i«-форме.Особые обстоятельства имеют место для трехчленного цикла. Здесь двугранный угол для цыс-протонов равен 0°, а дл!rpawc-протонов он составляет примерно 130°. В соответствии iКРИВОЙ На рИС. IV. 23 МОЖНО ОЖИДаТЬ, ЧТО3 / ч и с >3/гро/Л;, И ЭТ<всегда подтверждается экспериментально для пары цис, трансизомеров замещенных циклопропанов.Те же соотношения справедливы для этиленоксида и азир*дина. Для производных циклобутана и циклопентана двугра!ные углы менее четко определяются, так как циклы очень по;вижны. Поэтому однозначное определение конфигурации н|основе значений 3 У в этих системах, как правило, невозможна2.2.2.

Зависимость от длины связи R^. Ha рис. IV. 24 вицинальные константы спин-спинового взаимодействия в нескольких ненасыщенных шестичленных циклах отложены пр<|тив длин связей R^v, определенных при точных структураисследованиях соответствующих соединений.Двугранные углы в рассматриваемых соединениях мо>но принять равными 0°, а поскольку влияние углеводороднь/ = - 32,62/?^ + 48,45Семичленные циклы: 3J = 21,91P^- 3,85з/ = _ 36,74/?^ + 60,68(IV. 26)(IV.

27)(IV. 28)2.2.3. Зависимость от валентных углов HCC. Влияние этогофактора на величину 3 / Н н яснее всего проявляется в значенияхвицинальных констант г{«с-протонов при двойной связи в циклических моноолефинах с различными размерами циклов. Вних двугранный угол равен 0°, и можно принять, что отсутствуют эффекты заместителей. Как показывает табл. IV.

12,Таблица IV. 12. Зависимостьвицинальной константы спин-спиновоговзаимодействия 3J от углов 0 и 6'0,5-1,52,5-3,7о;а:а8,8-11,04,0.9-12,67,5н5,1 - 7,0..»H10,3126Глава IVСвязь химического сдвига со строением молекул3наблюдается устойчивый рост J4Uc при переходе от циклопропана к большим циклам. Для восьмичленных циклов наблюдаются такие же большие вицинальные константы, как вациклических олефинах. Из этих данных мы заключаем, что3уменьшение валентных углов 0 и 6' ведет к росту /нн- Этонаблюдение подтверждается и данными для ароматических соединений.2.2.4. Эффекты заместителя. При введении злекроотрицательного заместителя к фрагменту H—С—С—H наблюдаетсяуменьшение вицинальной константы как в насыщенных, таки в ненасыщенных системах. Для замещенных этанов соотношение между изменением электроотрицательности AE = E(X) —— E ( H ) , вызванным заменой водородного атома на группу X,и константой 3 /нн имеет вид3/нн = 9,41-0,8OAE(IV.

29)Для замещенных этиленов получены подобные соотношения:Ч гране= 19,0- 3,3 Д£(IV. 30)з/цш. = 11,7-4,7ДЕ(IV. 31)Данные табл. IV. 13 хорошо иллюстрируют этот эффект.Различие коэффициентов в уравнениях (IV. 30) и (IV. 31)показывает, что имеет значение и пространственная ориентация заместителя X во фрагменте H—С—С—H. Примером может служить 4-фенил-1,3-диоксан (46). Объемистый фенильный заместитель, как можно полагать, фиксирует эту молекулу в конформации 46а. Пространственное окружение связиCs—C6 показывает ньюменовская проекция 466. Несмотря нанебольшие изгибы цикла, двугранные углы $Cd и фаь равны.Тем не менее 3JCd отличается от 3 / а &, как показывают экспериментальные значения на формуле 466.

Характеристики

Тип файла
PDF-файл
Размер
8,24 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее