LinAl11 (1113086)

Файл №1113086 LinAl11 (Электронные лекции)LinAl11 (1113086)2019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

8. Сопряжённые операторы

Пусть — евклидово пространство, .

Опр. сопряжён к (обозначается ), если .

Таким образом, по определению . Существование для любого оператора сопряжённого, докажем чуть позже.

Предложение. и

(1).

а значит, по предыдущей теореме .

(2). .

Теорема. Пусть — матрица оператора в ортонормированном базисе . Тогда имеет в этом базисе матрицу .

Обозначим . Пусть — матрица в базисе . Тогда:

, . Непосредственно из определения и ортонормированности базиса следует, что .Итак, доказано, что . Замечание. Мы ещё не доказали существование сопряжённого оператора для любого, но это очевидно (достаточно положить = и провести аналогичное доказательство).

9. Самосопряжённые операторы

Опр. Оператор самосопряжён в евклидовом пространстве , если .

Лемма 1. Пусть — линейный оператор на над и . Тогда существует ненулевое инвариантное подпространство размерности меньше 2 (т.е. и ).

Если имеет собственный вектор , то — это инвариантное подпространство размерности 1, и всё доказано. Так что будем считать, что собственных векторов у нет. Рассмотрим минимальный многочлен : . В его разложении на множители над будут множители степени 2 и только они (если есть множитель степени 1, то есть и собственный вектор, противоречие). Выделим один из них. Таким образом и . Рассмотрим оператор . Так как , то многочлен не минимальный и, значит, . Пусть , а и . Пусть . Тогда . Осталось доказать лишь, что , то есть, что . Пусть . Тогда . Однако, из определения , . Отсюда .

Лемма 2. Пусть — самосопряжённый оператор на евклидовом пространстве , — инвариантное подпространство для . Тогда и также инвариантно для .

. . Итак

Теорема. Пусть — самосопряжённый оператор на евклидовом пространстве . Тогда в существует ортонормированный базис из собственных векторов .

Индукция по . — очевидно.

Пусть (именно этот случай мы будем использовать в шаге), — ортонормированный базис V, — матрица оператора в этом базисе. Из самосопряжённости , следует, что:

.

у есть хоть один действительный корень у есть собственный вектор . Но , а также инвариантно по лемме 2. Отсюда базис — искомый базис.

Пусть . По лемме 1 существует , . Тогда , а значит , где .

Опр. Матрица называется ортогональной, если , то есть .

Лемма 3. Матрица перехода от одного ортонормированного базиса в к другому ортогональна.

Пусть и — два ортонормированных базиса. Пусть — матрица перехода от первого ко второму базису. Тогда . Из ортонормированности следует, что . С другой стороны, , что и означает, что .

10. Приведение квадратичной формы к главным осям.

Пусть — квадратичная форма в .

Теорема. В найдётся ортонормированный базис , в котором имеет вид .

Пусть — произвольный ортонормированный базис в пространстве , и — матрица в этом базисе. Тогда , и значит существует линейный самосопряжённый оператор с матрицей . По предыдущей теореме существует ортонормированный базис из собственных векторов , в котором имеет диагональную матрицу . Значит . По лемме 3 , поэтому — диагональна. Но — матрица в .

Опр. Приведением квадратичной формы к главным осям называют переход к ортогональному базису в , где она имеет нормальный вид.

ОРТОГОНАЛЬНЫЕ ОПЕРАТОРЫ

1. Основные понятия

Пусть — линейный оператор в евклидовом пространстве .

Опр. Оператор ортогонален, если он сохраняет скалярное произведение, то есть .

Лемма 4. ортогонален имеет ортогональную матрицу в ортонормированном базисе.

Пусть — ортонормированный базис , — матрица в этом базисе, , . Тогда . Поэтому ортогонален .

Лемма 5. Пусть — ортогогональный оператор на евклидовом пространстве , — инвариантное подпространство для . Тогда и также инвариантно для .

По лемме 4 оператор — не вырожден. Тогда , и значит . Поэтому . Пусть — любой вектор, . Тогда и

, то есть .

12 марта 2005

—2—

Характеристики

Тип файла
Документ
Размер
373,5 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее