А.В. Михалёв - Лекции по высшей алгебре (1106006), страница 5
Текст из файла (страница 5)
â ª, G(a) —¯à®áâ ï £à㯯 ⮣¤ ¨ ⮫쪮 ⮣¤ , ª®£¤ |G| = O(a) = p. ¬¥ç ¨¥ 2. ᫨ |G| = pk , k > 1 — ª®¥ç ï p-£à㯯 ¨§ pk , k > 1, í«¥¬¥â®¢, â® G ¥ï¢«ï¥âáï ¯à®á⮩. ¥©á⢨⥫ì®, e 6= Z(G) ⊳ G.¥®à¥¬ ® ª« áá¨ä¨ª 樨 ª®¥çëå ¯à®áâëå £à㯯, ¢¨¤¨¬®, § ¢¥àè¥ , ¥ñ ¯®«®¥ á¢ï§®¥ ¤®ª § ⥫ìá⢮ á®§¤ ¥âáï.ë ¤®ª ¥¬ ⥮६㠮 ⮬, çâ® ¯à¨ n ≥ 5 £à㯯 An ï¥âáï ¯à®á⮩ (¢ ç áâ®áâ¨, A5 —¯à®áâ ï £à㯯 ). §¡¨¥¨¥ ª« ááë ᮯàï¥ëå í«¥¬¥â®¢ ¢ £à㯯¥ Sn. ¬¥ç ¨¥.
¨á«® 横«®¢ ¤«¨ë k ¢ Sn à ¢®(k − 1)! (¢ë¡®à ®à¡¨âë ¨§ k í«¥¬¥â®¢; ¨¬¥ì訩 í«¥¬¥â i1 ¢ ®à¡¨â¥; ¯¥à¥áâ ®¢ª¨ ¨§ ®áâ «ìëå k − 1 í«¥¬¥â®¢ 2, . . . , k ¬¥áâ å).. (a, b, c) = (b, c, a) = (c, a, b), (a, b, c) 6= (a, c, b); (1, 2, 3), (1, 3, 2).à㯯 S3 ( ¡¥«¥¢ , Z(S2 ) = S2 ), ¤¢ ®¤®í«¥¬¥âëå ª« áá ᮯàï¥ëå í«¥¬¥â®¢.à㯯 S3 , |S3 | = 6.(a) (a, b) (a, b, c)1 + 3 + 2 =6nkDZਬ¥àà㯯 S4 , |S4 | = 24.(a) (a, b)(c, d) (a, b) (a, b, c) (a, b, c, d)1 +3+ 6 + 8 +6= 2415¥ªæ¨ï 11http://mmresource.nm.ru/à㯯 S5 , |S5 | = 120.(a) (a, b) (a, b, c) (a, b, c, d) (a, b, c, d) (a, b)(c, d) (a, b, c)(d, e)1 + 10 + 20 +30+24 +15+20= 120kkkkkk 55555 3 1523 2!4 3!5 4!2 2 23 2!2! = 20.
¨á«® 横«®¢ (a, b, c) à ¢® 53 2! = 20; (d, e) = (e, d) — ¢â®¬ â¨ç¥áª¨ ®á⠢訥áï í«¥¬¥âë .«ãç © (a,b)(c, d): 52 32 12 = 15. ¨á«® 横«®¢ (a, b) à ¢® 52 , ¨§ ®áâ ¢è¨åáï 3 í«¥¬¥â®¢ ¢ë¡®à(c, d) ¤ ¥â 32 ¢®§¬®®áâ¨, ® (a, b)(c, d) = (c, d)(a, b), ¨â ª 302 = 15.«ãç © (a, b, c)(d, e):53à㯯 A5.§ 横«®¢®£® à §«®¥¨ï ¢ S5 ®áâ îâáï (ª ª ç¥âë¥) á«¥¤ãî騥 ¢®§¬®®áâ¨:(a, b)(c, d), (a, b, c, d, e). §¡¥à¥¬ í⨠á«ãç ¨:«ãç © (a): 1.«ãç © (a, b, c):(a), (a, b, c),20 (ª ª ¨ ¢ S5 ).
DZãáâì, ¤«ï ¯à®áâ®âë, (a, b, c) = (1, 2, 3). |CS5 (1, 2, 3)| =|S5 |/| OrbS5 (1, 2, 3)| = 120/20 = 6, CS5 (1, 2, 3) = {e, (1, 2, 3), (1, 3, 2), (4, 5), (1, 2, 3)(4, 5), (1, 3, 2)(4, 5)}(DZ®ïᥨ¥: H = {e, (1, 2, 3)(1, 3, 2)}, K = {e, (4, 5)}; HK ⊆ CS5 (1, 2, 3); |HK| = |H||K|/|H ∩ K| =3 · 2/1 = 6, ¯®í⮬ã CS5 (1, 2, 3) = HK). áâ ¢«ïï «¨èì ç¥âë¥: CA5 (1, 2, 3) = {e, (1, 2, 3), (1, 3, 2)},|CA5 (1, 2, 3)| = 3. âáî¤ , OrbA5 (1, 2, 3) = |A5 |/3 = 60/3 = 20.®ª § ⥫ìá⢮ (¢â®à®¥). | OrbA5 (1, 2, 3)| = 20. .
DZਠn ≥ 5 «î¡ë¥ ¤¢ 3−横« ¢ £à㯯¥ An ᮯàï¥ë.®ª § ⥫ìá⢮. DZãáâì σ1 = (1, 2, 3), σ2 = (a, b, c) ∈ An , n ≥ 5. ©¤¥âáï τ ∈ Sn , ¤«ï ª®â®à®©σ2 = τ (1, 2, 3)τ −1 . ) ᫨ τ ∈ An , â® ¢á¥ ¤®ª § ®;¡) ᫨ τ ∈ Sn \ An , â® ρ = τ (4, 5) ∈ An , (4, 5) ∈ CA5 ((1, 2, 3)). ®£¤ , ρ(1, 2, 3)ρ−1 =τ (4, 5)(1, 2, 3)(4, 5)−1 τ −1 = τ (1, 2, 3)τ −1 = σ2 . «ãç © (a, b)(c, d): | OrbA5 ((a, b)(c, d))| = 15. DZãáâì β = (1, 2)(3, 4).
®£¤ |CS5 (β)| = 120/15 = 8 ¨¥ ¤¥«¨â ç¨á«® |An | = 60. ª¨¬ ®¡à §®¬, CA5 (β) — ᮡá⢥ ï ¯®¤£à㯯 ¢ CS5 (β), ¢®§¬®ë¥¥ñ ¯®à浪¨: 4, 2, 1 (¯® ⥮६¥ £à ). ® | OrbA5 (β)||CA5 (β)| = 60. ª ª ª | OrbA5 (β)| ≤| OrbS5 (β)| = 15, â® | OrbA5 (β)| = 15, ¨ ¯®í⮬ã OrbA5 (β) = OrbS5 (β).®ª § ⥫ìá⢮ (¢â®à®¥). | OrbA5 ((a, b)(c, d))| = 15.. DZ®¤áâ ®¢ª¨ ¢¨¤ (1, 2)(3, 4) ¨ (a, b)(c, d) ᮯàï¥ë ¢ An ¯à¨ n ≥ 5.®ª § ⥫ìá⢮. DZãáâì m = 5 (®â«¨çë© ®â 1, 2, 3, 4).
®£¤ (3, 4, m)(1, 2)(3, 4)(3, 4, m)−1 =(1, 2)(4, m). «ãç © (a, b, c, d, e): | OrbA5 (a, b, c, d, e)| = 12. ¬¥â¨¬, çâ® ¤«ï α = (1, 2, 3, 4, 5): | OrbS5 (1, 2, 3, 4, 5)| = 24,|CS5 (1, 2, 3, 4, 5)| = 120/24 = 5. ª ª ª (α) = {e, α, α2 , α3 , α4 } ⊆ An , â® (α) ⊆ CA5 (1, 2, 3, 4, 5) ⊆CS5 (1, 2, 3, 4, 5), ¨ ¯®í⮬ã CA5 (1, 2, 3, 4, 5) = CS5 (1, 2, 3, 4, 5). ® ⮣¤ | OrbA5 (α)| = 60/5 = 12..·OrbS5 (1, 2, 3, 4, 5) = OrbA5 (1, 2, 3, 4, 5) ∪ OrbA5 (1, 2, 3, 5, 4).(A5 ).¥¬¬ ¥¬¬ «¥¤á⢨¥¥®à¥¬ ® à §¡¨¥¨¨ ª« ááë ᮯàï¥ëå í«¥¬¥â®¢ £à㯯ë(a) (a, b, c) (a, b)(c, d) (1, 2, 3, 4, 5) (1, 2, 3, 5, 4)1 + 20 +15+12+12= 60¥®à¥¬ .A5 — ¯à®áâ ï (¥ª®¬¬ãâ ⨢ ï £à㯯 ), |A5 | = 60.®ª § ⥫ìá⢮.
DZãáâì {e} 6= H ⊳ A5 .16¥ªæ¨ï 11http://mmresource.nm.ru/«ãç © 1: DZãáâì (a, b, c) ∈ H. ®£¤ ¨ ¢á¥ ᮯàï¥ë¥ á ¨¬ 横«ë ¤«¨ë 3 «¥ â ¢ H, ¨å20 èâãª.|H| ≥ 35, ª ª ª (3, 2, 4)(1, 3, 2) = (1, 2)(3, 4), â® ¢ H «¥ â ¨ ¢á¥ 15 ¯®¤áâ ®¢®ª (a, b)(c, d), ¨â ª® |H| — ¤¥«¨â¥«ì ç¨á« |A5 | = 60, â. ¥. |H| = 35, ¨ ¯®í⮬ã H = A5 .«ãç © 2: α = (a, b, c, d, e) ∈ H. ®£¤ (a, b)(c, d)(a, b, c, d, e)(a, b) (c, d) = (b, a, d, c, e) ∈ H,(b, a, d, c, e)(a, b, c, d, e) = (b, e, d) ∈ H, ¨ ¯®í⮬ã (á«ãç © 1) H = A5 .«ãç © 3: (a, b)(c, d) ∈ H. ®£¤ (a, b, c, e, d) = (d, e)(a, c)(c, d) (a, b) ∈ H, ¨ (á«ãç © 2) ¯®í⮬ãH = A5 .«¥¤á⢨¥ 1.A5 — ¯à®áâ ï ¥ª®¬¬ãâ ⨢ ï ¥à §à¥è¨¬ ï £à㯯 , |A5 | = 60.[A5 , A5 ] = A5 2.
G = A5 , |A5 | = 60 = 30 · 2, ® ¢ G ¥â ¯®¤£àã¯¯ë ¨§ 30 í«¥¬¥â®¢ (â. ¥. ¯à¨¬¥à,ª®£¤ ®¡à 饨¥ â¥®à¥¬ë £à ¥ ¨¬¥¥â ¬¥áâ ).®ª § ⥫ìá⢮. ᫨ H ⊂ G, |H| = 30, â® [G : H] = 2 ¨ H ⊳ G, çâ® ¯à®â¨¢®à¥ç¨â ¯à®áâ®â¥£à㯯ë G. 1. DZãáâì n ≥ 5, {e} 6= H ⊳ Sn , H 6= Sn , ⮣¤ H = An .2. DZãáâì O(n) = {A ∈ Mn (R)|At = A−1 }, DZãáâì SO(n) = {A ∈ O(n)||A| = 1}.®ª § âì, çâ® SO(3) — ¯à®áâ ï £à㯯 .®ª § ⥫ìá⢮.«¥¤á⢨¥¯à ¥¨¥¯à ¥¨¥17¥ªæ¨ï 13http://mmresource.nm.ru/ 13.26®ï¡àï 2002 £.ëç¨á«¥¨¥ ¢ ä ªâ®àª®«ìæ¥ ª®«ìæ ¬®£®ç«¥®¢¯® £« ¢®¬ã ¨¤¥ «ã, ¯®à®¤¥®¬ã ¥¯à¨¢®¤¨¬ë¬¬®£®ç«¥®¬DZãáâì K — ¯®«¥, K[x] — ª®«ìæ® ¬®£®ç«¥®¢, p(x) — ¥¯à¨¢®¤¨¬ë© ¬®£®ç«¥, deg p(x) = n,(p(x)) = K[x]p(x) = {f (x)p(x)|f (x) ∈ K[x]}.
« ¢ë© ¨¤¥ « ª®«ìæ K[x], ¯®à®¤¥ë© ¬®£®ç«¥®¬ p(x), L = K[x]/(p(x)) — ä ªâ®àª®«ìæ®. ë ãáâ ®¢¨«¨, çâ® L — ¯®«¥ ¨ ®â®¡à ¥¨¥, ¯à¨ª®â®à®¬ k → k̄ = k + (p(x)), ®áãé¥á⢫ï¥â ¢«®¥¨¥ ¯®«ï K ¢ ¯®«¥ L. ᫨ h(x) ∈ K[x], â® h(x) = p(x)q(x)+r(x), ¯à¨ í⮬ r(x) = k0 +k1x+. . .+kn−1 xn−1 , n = deg p(x),k0 , k1 , .
. . , kn−1 ∈ K. DZ®í⮬ãh(x) + (p(x)) = r(x) + p(x)q(x) + (p(x)) = r(x) + (p(x)) == k0 + k1 x + . . . + kn−1 xn−1 + (p(x)) = k̄0 + k̄1 ξ + . . . + k̄n−1 ξ n−1 ,£¤¥ ξ = x + (p(x)) ∈ L. ª¨¬ ®¡à §®¬:1) r(x) — ª ®¨ç¥áª¨© ¯à¥¤áâ ¢¨â¥«ì ᬥ®£® ª« áá h(x) + (p(x)) (®¤®§ ç® ®¯à¥¤¥«¥ë©, ª ª ¨¬¥î騩 ¨¬¥ìèãî á⥯¥ì).2) ®«ìæ¥¢ë¥ ®¯¥à 樨 á í«¥¬¥â ¬¨ ¯®«ï L ¬®® ¨â¥à¯à¥â¨à®¢ âì ª ª: ) á«®¥¨¥ ¬®£®ç«¥®¢ r(x), deg r(x) ≤ n − 1; ¡) 㬮¥¨¥ á ¯®á«¥¤ãî騬 ¢§ï⨥¬ ®áâ ⪠®â ¤¥«¥¨ï p(x)(â. ¥. ¥á«¨ r1 (x)r2 (x) = p(x)q(x) + r3 (x), deg r1 (x) ≤ n − 1, deg r2 (x) ≤ n − 1, deg r3 (x) ≤ n − 1, â®(r1 (x) + (p(x)))(r2 (x) + (p(x))) = r3 (x) + (p(x)) ).3) ç¨â ï, çâ® K ⊆ L (¯à¨ ®â®¤¥á⢫¥¨¨ K ∋ k → k̄ = k + (p(x)) ∈ L), ¬ë ¢¨¤¨¬, çâ®{1, ξ, .
. . , ξ n−1 }, £¤¥ ξ = x + (p(x)) ∈ L, — ¡ §¨á «¨¥©®£® ¯à®áâà á⢠K L ¤ ¯®«¥¬ K, ¨, â ª¨¬®¡à §®¬, dimK L = n.4) ª ª ª p(ξ) = 0, â® ¥¯à¨¢®¤¨¬ë© ¬®£®ç«¥ p(x) ¨¬¥¥â ¢ à áè¨à¥®¬ L ¯®«ï K ª®à¥ì.. K = R — ¯®«¥ ¤¥©á⢨⥫ìëå ç¨á¥«, p(x) = x2 + 1 ∈ R[x] — ¥¯à¨¢®¤¨¬ë© ¬®£®ç«¥. ®£¤ L = R[x]/(x2 + 1) ∼= C (C — ¯®«¥ ª®¬¯«¥ªáëå ç¨á¥«).®ª § ⥫ìá⢮ 1-¥. ª ª ª ξ 2 + 1 = 0, ¤«ï ξ = x + (x2 + 1), â® ¤«ï a, b ∈ R ᮮ⢥âá⢨¥a + bξ ↔ (a, b) ↔ a + bi ï¥âáï ¨§®¬®à䨧¬®¬ ¯®«¥© L = R[x]/(x2 + 1) ¨ C.
®ª § ⥫ìá⢮ 2-¥. áᬮâਬ £®¬®¬®à䨧¬ ∆ : R[x] → C, ¤«ï ª ¤®£® ∆(f (x)) = f (i). ¬¥â¨¬, çâ® ker ∆ = {f (x) ∈ R[x]|f (i) = 0} = R[x](x2 + 1) = (x2 + 1), ¯®áª®«ìªã ¥á«¨ ¬®£®ç«¥f (x) á ¤¥©á⢨⥫ì묨 ª®íä䍿¨¥â ¬¨ ¨¬¥¥â ª®à¥ì i, â® −i â ª¥ ï¥âáï ¥£® ª®à¥¬, ¨¯®í⮬ã f (x) ¤¥«¨âáï (x − i)(x + i) = x2 + 1. DZ® ⥮६¥ ® £®¬®¬®à䨧¬¥ ¤«ï ª®àïDZਬ¥àL = R[x]/(x2 + 1) ∼= C.¯à ¥¨¥. DZãáâì p(x) ∈ R[x] — «î¡®© ¥¯à¨¢®¤¨¬ë© ¬®£®ç«¥ 2-© á⥯¥¨.
®£¤ L = R[x]/(p(x)) ∼= C.DZਬ¥à. DZãáâì K = Zp — ¯®«¥ ¢ëç¥â®¢ ¯® ¬®¤ã«î p, |K| = p, p(x) ∈ Zp [x] — ¥¯à¨¢®¤¨¬ë©¬®£®ç«¥, deg p(x) = n. ®£¤ L = Zp [x]/(p(x)) — ª®¥ç®¥ ¯®«¥ ¨§ pn í«¥¬¥â®¢. ç áâ®áâ¨, ¯ãáâì K = Z2 , p(x) = x2 + x + 1 ∈ Z2 [x] — ¥¯à¨¢®¤¨¬ë© ¬®£®ç«¥, ⮣¤ L = Z2 [x]/(x2 + x + 1) — ¯®«¥ ¨å 4-å í«¥¬¥â®¢.¯à ¥¨¥. DZ®áâநâì ª®¥ç®¥ ¯®«¥ ¨§ 8 ¨ ¨§ 9 í«¥¬¥â®¢.18¥ªæ¨ï 13http://mmresource.nm.ru/DZà®á⮥ ¯®¤¯®«¥¯à¥¤¥«¥¨¥. DZãáâì L — ¯®«¥. DZà®á⮥ ¯®¤¯®«¥ — íâ® ¨¬¥ì襥 ¯®¤¯®«¥, ᮤ¥à 饥 1(®®áãé¥áâ¢ã¥â, ª ª ¯¥à¥á¥ç¥¨¥ ¢á¥å ¯®¤¯®«¥© ¯®«ï L). áᬮâਬ ª ®¨ç¥áª¨© £®¬®¬®à䨧¬ ª®«¥æ∆ : Z → Z · 1 ⊆ L,¯à¨ ª®â®à®¬ ∆(n) = n · 1 ¤«ï n ∈ Z.®§¬®ë ¤¢ á«ãç ï:«ãç © 1: char L = 0.
í⮬ á«ãç ¥ ker ∆ = 0, ¨ ¯®í⮬ã ∆ : Z → Z · 1, n → n · 1, — ¨§®¬®à䨧¬ª®«¥æ. ª¨¬ ®¡à §®¬, ¨¬¥ì襥 ¯®¤¯®«¥ ¯®«ï L, ᮤ¥à 饥 1, á®á⮨⠨§ í«¥¬¥â®¢ (m · 1)(n ·1)−1 , n 6= 0, ¨ ¨§®¬®àä® ¯®«î Q à æ¨® «ìëå ç¨á¥«.«ãç © 2: char L = p — ¯à®á⮥ ç¨á«®. ®£¤ ker ∆ = Zp , ¨ ¯® ⥮६¥ ® £®¬®¬®à䨧¬ åZ·1 ∼= Z/Zp ∼= Zp ,â. ¥.
Z · 1 = {n · 1|n ∈ Z}, ®ª §ë¢ ¥âáï ¨¬¥ì訬 ¯®¤¯®«¥¬ ¢ L, ᮤ¥à 騬 1, ¨ ¨§®¬®à䮯®«î ¢ëç¥â®¢ Zp ¤«ï p = char L.«¥¤á⢨¥.1)2)¥á«¨ char L = 0, â® ¬®® áç¨â âì, çâ® ¯®«¥ L ᮤ¥à¨â ¯®«¥ Q à æ¨® «ìëå ç¨á¥«;¥á«¨ char L = p, â® ¬®® áç¨â âì, çâ® ¯®«¥ L ᮤ¥à¨â ¯®«¥ ¢ëç¥â®¢ Zp .â஥¨¥ ª®¥çëå ¯®«¥©¥®à¥¬ . ᫨ L — ª®¥ç®¥ ¯®«¥, p = char L, â® |L| = pn .®ª § ⥫ìá⢮. DZ®«¥ L c®¤¥à¨â ¯®«¥ ¢ëç¥â®¢ Zp (ª ª ¯à®á⮥ ¯®¤¯®«¥), Zp⊆ L, ¯®í⮬㪮¥ç®¬¥à®¥ «¨¥©®¥ ¯à®áâà á⢮ ¤ ¯®«¥¬ Zp .
ª¨¬ ®¡à §®¬, ¥á«¨ {e1, . . . , en} —¡ §¨á «¨¥©®£® Zp -¯à®áâà á⢠L, â® ª ¤ë© í«¥¬¥â ¯®«ï L ®¤®§ ç® ¯à¥¤áâ ¢«ï¥âáï ¢ ¢¨¤¥L —λ1 e1 + . . . + λn en , λi ∈ Zp ,¨ ¯®í⮬ã |L| = pn . ¬¥ç ¨¥. ¥ áãé¥áâ¢ã¥â ª®¥çëå ¯®«¥© ¨§ 6 í«¥¬¥â®¢ (6 = 2 · 3 ¥ ¨¬¥¥â ¢¨¤ pn ¢ à §«®¥¨¨ ¯à®áâë¥ ¬®¨â¥«¨). 襩 á«¥¤ãî饩 § ¤ 祩 ï¥âáï ¤®ª § ⥫ìá⢮ â¥®à¥¬ë ® ⮬, çâ® ¤«ï «î¡®£® ç¨á« ¢¨¤ N = pn áãé¥áâ¢ã¥â (¨ ¥¤¨á⢥®¥, á â®ç®áâìî ¤® ¨§®¬®à䨧¬ ) ª®¥ç®¥ ¯®«¥ ¨§ N = pní«¥¬¥â®¢.¥®à¥¬ .ã«ì⨯«¨ª ⨢ ï £à㯯 L∗£à㯯®©.®ª § ⥫ìá⢮.
DZãáâì |L| = N¤«ï ª®¥çëå ¡¥«¥¢ëå £à㯯= pn ,= L \ {0}ª®¥ç®£® ¯®«ï L ï¥âáï æ¨ª«¨ç¥áª®©â®£¤ m = |L∗| = N − 1. ᨫã áâàãªâãன ⥮६ëL∗ = G1 × . . . × Gr , |Gi | = pki i ,Gi = (ai ) — ¯à¨¬ à ï æ¨ª«¨ç¥áª ï £à㯯 . ᫨ pi = pj ¤«ï i 6= j, â® t = (pk11 , . . . , pkr r ) < pk11 . . . pkr r = m, ¨ ⮣¤ xt = 1 ¤«ï ¢á¥å x ∈ L∗,∗|L | = m > t, â. ¥.
¬®£®ç«¥ ¤ ¯®«¥¬ L ¨¬¥¥â à §«¨çëå ª®à¥© ¡®«ìè¥, 祬 ¥£® á⥯¥ì, ç⮥¢®§¬®®.â ª, pi 6= pj ¯à¨ i 6= j, ¨ ⮣¤ L∗ = G1 × . . . × Gr , |Gi | = pki i , — 横«¨ç¥áª ï £à㯯 (ª ª¯à®¨§¢¥¤¥¨¥ 横«¨ç¥áª¨å £à㯯 ¢§ ¨¬® ¯à®áâëå ¯®à浪®¢). 19¥ªæ¨ï 13http://mmresource.nm.ru/«¥¤á⢨¥. Z∗p = Zp \ {0} — 横«¨ç¥áª ï £à㯯 ¨§ p − 1 í«¥¬¥â . ¬¥ç ¨¥. ë¡à ¢ 横«¨ç¥áª¨© ®¡à §ãî騩 ¢ ¬ã«ì⨯«¨ª ⨢®© £à㯯¥ L∗ ª®¥ç®£® ¯®«ïL ¨ § ¯¨á ¢ ¥ã«¥¢ë¥ í«¥¬¥âë ¯®«ï L ª ª ¥£® á⥯¥¨, ¯®«ãç ¥¬ 㤮¡ë© ¨ íää¥ªâ¨¢ë© á¯®á®¡ã¬®¥¨ï í«¥¬¥â®¢ ª®¥ç®£® ¯®«ï.àã¤ ï § ¤ ç . (⥮६ ¥¤¤¥à¡ à ): ª®¥ç®¥ ⥫® ª®¬¬ãâ ⨢®, â. ¥. ï¥âáï ª®¥ç묯®«¥¬ (¨ë¬¨ á«®¢ ¬¨, ª®¥çëå ⥫ ¥ áãé¥áâ¢ã¥â)..
DZãáâì L — ª®¥ç®¥ ¯®«¥, char L = p, N = |L| = pn , ⮣¤ aN = a ¤«ï ¢á¥å a ∈ L,â. ¥. ¢á¥ í«¥¬¥âë a ∈ L ïîâáï à §«¨ç묨 ª®àﬨ ¬®£®ç«¥ xN − x ∈ Zp [x], ¨ ¯®í⮬ãxN − x = (x − a1 ) . . . (x − aN ), £¤¥ a1 , . . . , aN — ¢á¥ à §«¨çë¥ í«¥¬¥âë ¯®«ï L.®ª § ⥫ìá⢮. ª ª ª |L∗ | = N − 1, â® aN −1 = 1 ¤«ï ¢á¥å 0 6= a ∈ L, ¯®í⮬ã aN − a = 0 ¤«ï¢á¥å a ∈ L. rrrrrr. ᫨ L — ¯®«¥, char L = p, â® (a + b)p = ap + bp , (ab)p = ap bp ¤«ï ¢á¥å r ≥ 1, â. ¥.¢®§¢¥¤¥¨¥ ¢ p-ãî á⥯¥ì ï¥âáï £®¬®¬®à䨧¬®¬¨§ L ¢ L.P®ª § ⥫ìá⢮. ª ª ª (a + b)p = pk=0 Cpk ak bp−k ¨ ¡¨®¬¨ «ìë¥ ª®íä䍿¨¥âë Cpk ¯à¨r0 < k < p ¤¥«ïâáï p, â® (a + b)p = ap + bp . â¥à¨àãï íâ® á®®¡à ¥¨¥, ¯®«ãç ¥¬, çâ® (a + b)p =rrrrrap + bp ¯à¨ r ≥ 1. á®, çâ® (ab)p = ap bp ¤«ï «î¡®£® k ∈ N.