А.В. Михалёв - Лекции по высшей алгебре (1106006), страница 2
Текст из файла (страница 2)
DZãáâì H — ¯®¤£à㯯 £à㯯ë G, à áᬮâਬ ¯®«¨£® MH = GH , (xh) → xh¤«ï x ∈ G, h ∈ H. ᫨ p, x ∈ G, â® St(p) = {h ∈ H|ph = p} = {e} ¨ Orb(x) = xH — ¯à ¢ë©á¬¥ë© ª« áá xH ¯® ¯®¤£à㯯¥ H, ¯®à®¤ñë© í«¥¬¥â®¬ x ∈ G. ª¨¬ ®¡à §®¬, ¢ í⮬ç á⮬ á«ãç ¥ ¯®«¨£® GH à §¡¨¥¨¥ ®à¡¨âë ¯à¥¢à é ¥âáï ¢ å®à®è® § ª®¬®¥ ¬. à §¡¨¥¨¥£àã¯¯ë ¢ ®¡ê¥¤¨¥¨¥ ¥¯¥à¥á¥ª îé¨åáï à §«¨çëå ¯à ¢ëå ᬥëå ª« áᮢ G = ∪ xH, ¨ ª ªá«¥¤á⢨¥ ¯®¤áçñâ í«¥¬¥â®¢ ¯® ®à¡¨â ¬ ¨¬¥¥¬|G| =(â. ¥.X| Orb(x)| =X|xH| = [G : H]|H|⥮६㠣à ). §¡¨¥¨¥ «¥¢ë¥ á¬¥ë¥ ª« ááë Hx ¯® ¯®¤£à㯯¥ H £à㯯ë G ¯®«ãç ¥âáï à áᬮâ२¥¬«¥¢®£® ¯®«¨£® H G.DZਬ¥à 8 (¤¥©á⢨¥ £à㯯ë G ¯à ¢ë¬¨ 㬮¥¨ï¬¨ ¬®¥á⢥ «¥¢ëå ᬥë媫 áᮢ).
DZãáâì H — ¯®¤£à㯯 £à㯯ë G,MG = {Hx, x ∈ G},(Hx)g = Hxg¤«ï x, g ∈ G(í⮠㬮¥¨¥ ª®à४â®: ¥á«¨ Hx = Hx′ , â® x′ = hx, h ∈ H ¨ ¯®í⮬ã x′ g = hxg, ⮣¤ Hx′ g =Hxg). ᫨ x, g1 , g2 ∈ G, â® (Hx)(g1 , g2 ) = ((Hx)g1 )g2 ¨ (Hx)e = Hx, â. ¥. MG = {Hx|x ∈ G}G —¯à ¢ë© ¯®«¨£® ¤ £à㯯®© G.
ª ª ª Orb(Hx) = MG , â® íâ® ¤¥©á⢨¥ £à㯯ë G âà §¨â¨¢®.9. DZãáâì k ∈ N ¨ MG = Lk (G)G = {X ⊆ G||X| = k}, (X, g) → Xg ¤«ï X ∈ Lk (G),g ∈ G (ïá®, çâ® |Xg| = |X| = k). á®, çâ® MG = Lk (G)G — ¯à ¢ë© G-¯®«¨£®. ç áâ®áâ¨, ¥á«¨ |G| = n < ∞ ¨ k ∈ N, â® MG = Lk (G)G = {X1 , . . . , XCnk ||Xi| = k}G — ¯à ¢ë©G-¯®«¨£®.10 (GG). DZãáâì MG = GG , (m, g) →g −1 mg = mαg ¤«ï m, g ∈ G. ª ª ª ¤«ï m, g, h ∈ G ¨¬¥¥¬DZਬ¥àDZਬ¥à¤¥©á⢨¥ £àã¯¯ë £à㯯¥ ᮯà泌¥¬mαgh = (gh)−1 m(gh) = h−1 (g −1 mg)h = (mαg )αh ,â. ¥.
αgh = αg αh ,mαe = e−1 me = m,â® MG = GG á ᮯà泌¥¬ — ¯à ¢ë© G-¯®«¨£®. ¬¥ç ¨¥. ª ¬ë ®â¬¥ç «¨, αg : G → G, m → mαg = g−1mg, — ¢â®¬®à䨧¬ £à㯯ë G, §ë¢ ¥¬ë© ¢ãâ२¬ ¢â®¬®à䨧¬®¬ £à㯯ë G. ᥠ¢ãâ२¥ ¢â®¬®à䨧¬ë In Aut(G) =Inr Aut(G) = {αg |g ∈ G} — ¯®¤£à㯯 £à㯯ë Aut(G) ¢â®¬®à䨧¬®¢ £à㯯ë G, ª®â®à ï ¢ ᢮î®ç¥à¥¤ì ï¥âáï ¯®¤£à㯯®© S r (G) = S(G) ¢á¥¬ ¯®¤áâ ®¢®ª ¬®¥á⢥ G. ª¨¬ ®¡à §®¬, ¬ë ¨¬¥¥¬ á«¥¤ãî騥 ¯®«¨£®ë:GS(G) ,GAut G ,GIn Aut G .®¬¯®§¨æ¨ï £®¬®¬®à䨧¬ G → In Aut G, g → αg , á ¥áâ¥áâ¢¥ë¬ ¯à¥¤áâ ¢«¥¨¥¬ ¯à ¢ë¬ ¤¥©á⢨¥¬ £à㯯ë In Aut G ¬®¥á⢥ G ᮢ¯ ¤ ¥â á ¤¥©á⢨¥¬ £à㯯ë G ᮯà泌ﬨ £à㯯¥G.5¥ªæ¨ï 8http://mmresource.nm.ru/¯à ¥¨¥. â®¡à ¥¨¥ α : S3 → Aut S3, g → αg , ï¥âáï ¨§®¬®à䨧¬®¬ £à㯯.« áá ᮯàï¥ëå í«¥¬¥â®¢. ᫨ x ∈ G, â® ¯à¨ ᮯà泌¨Orb(x) = {g −1 xg|g ∈ G} —ª« ááë ᮯàïñëå í«¥¬¥â®¢ í«¥¬¥â x.á®, çâ® Orb(e) = {e}. ®«¥¥ ⮣®, | Orb(x)| = 1 ⇔ x ∈ Z(G), â.
¥. ®¤®í«¥¬¥âë¥ ®à¡¨âë —íâ®, ¢ â®ç®áâ¨, í«¥¬¥âë æ¥âà , ¯®áª®«ìªã g−1 xg = x ¤«ï ¢á¥å g ∈ G à ¢®á¨«ì® ⮬ã, çâ®xg = gx ¤«ï ¢á¥å g ∈ G, â. ¥. ⮬ã, çâ® x ∈ Z(G).á®, çâ®St(x) = {g|g −1xg = x} = C(x),£¤¥ C(x) = {y ∈ G|xg = gx) — æ¥âà «¨§ â®à í«¥¬¥â x ∈ G. ª¨¬ ®¡à §®¬, ⥮६ ® à §¡¨¥¨¨ ®à¡¨âë ¢ ¤ ®¬ á«ãç ¥ ®§ ç ¥â á«¥¤ãî饥:¥®à¥¬ (® à §¡¨¥¨¨ ª« ááë ᮯàïñëå í«¥¬¥â®¢).DZãáâì G — £à㯯 , ⮣¤ :£à㯯 ï¥âáï ®¡ê¥¤¨¥¨¥¬ ®à¡¨â — ¥¯¥à¥á¥ª îé¨åáï à §«¨çëå ª« áᮢ ᮯàïñëå í«¥¬¥â®¢ (â.
¥. ®â®è¥¨¥ ᮯàïñ®á⨠y ∼ x, ¥á«¨, y = g−1 xg, ï¥âáï ®â®è¥¨¥¬íª¢¨¢ «¥â®áâ¨);2) ç¨á«® í«¥¬¥â®¢ ª®¥ç®© £à㯯ë G, ᮯàïñëå á í«¥¬¥â®¬ x ∈ G, à ¢® ¨¤¥ªáã æ¥âà «¨§ â®à C(x) í«¥¬¥â x ∈ G ¢ £à㯯¥ (¯®áª®«ìªã |G| = | Orb(x)| · | St(x)| = { ç¨á«® ᮯàïñëåá x í«¥¬¥â®¢ } · |C(x)|), â. ¥. ç¨á«ã |G|/|C(x)|.1) ¤ ç . §¡¨¥¨¥ ª« ááë ᮯàïñëå í«¥¬¥â®¢ ¢ £à㯯¥ ¯®¤áâ ®¢®ª Sn ®¯à¥¤¥«ï¥âáï⨯®¬ 横«®¢®£® à §«®¥¨ï (â. ¥. ¤¢¥ ¯®¤áâ ®¢ª¨ ¢ Sn ᮯàï¥ë ⮣¤ ¨ ⮫쪮 ⮣¤ , ª®£¤ ®¨ ¨¬¥îâ ®¤¨ ª®¢ë¥ 横«®¢ë¥ à §«®¥¨ï, â. ¥.
¤«ï ª ¤®£® ç¨á« r ®¤¨ ª®¢®¥ ç¨á«® 横«®¢¤«¨ë r ¢ ¨å 横«®¢ëå à §«®¥¨ïå).¥®à¥¬ .¥âà ª®¥ç®© p-£à㯯ë.DZãáâì G — ª®¥ç ï p-£à㯯 , â. ¥. |G| = pk , £¤¥ p — ¯à®á⮥ ç¨á«®, k ∈ N. ®£¤ ¥ñ æ¥âà ¥âਢ¨ «¥, â. ¥. |Z(G)| > 1.®ª § ⥫ìá⢮.
áᬮâਬ à §¡¨¥¨¥ £à㯯ë G ª« ááë ᮯàïñëå í«¥¬¥â®¢. ¤®-í«¥¬¥âë© ª« áá — íâ® ¢ â®ç®áâ¨ í«¥¬¥â æ¥âà (®¤¨ ¨§ ¨å {e}). ®¤¥à 騩 ¡®«ìè¥ ®¤®£®í«¥¬¥â ª« áá ᮯàïñëå í«¥¬¥â®¢ ᮤ¥à â pl í«¥¬¥â®¢, £¤¥ l > 1 (ª ª ¥âਢ¨ «ìë© ¤¥«¨â¥«ì ç¨á« |G| = pk ).âáî¤ á«¥¤ã¥â, çâ® |Z(G)| > 1 (¢ ¯à®â¨¢®¬ á«ãç ¥, pk = 1 + pq). ¥®à¥¬ (® ª®¬¬ãâ ⨢®á⨠£àã¯¯ë ¨§ p2 í«¥¬¥â®¢).DZãáâì G — ª®¥ç ï £à㯯 ,£¤¥ p — ¯à®á⮥ ç¨á«®. ®£¤ G — ¡¥«¥¢ (â.
¥. ª®¬¬ãâ ⨢ ï) £à㯯 .®ª § ⥫ìá⢮. ᨫ㠯।ë¤ã饩 ⥮६ë, |Z(G)| > 1, â. ¥. |Z(G)| = p ¨«¨ |Z(G)| = p2 . ®|G| = p2 ,¯¥à¢ë© á«ãç © (|Z(G)| = p) ¥¢®§¬®¥, ¯®áª®«ìªã ¢ í⮬ á«ãç ¥ |Z/Z(G)| = p2 /p = p, ¨ ¯®í⮬ãZ/Z(G) — 横«¨ç¥áª ï £à㯯 , çâ®, ª ª ¡ë«® ¯®ª § ® à ¥¥, ¥¢®§¬®®. â ª, |Z(G)| = p2 ,â. ¥. G = Z(G), ¨ ¯®í⮬㠣à㯯 G ª®¬¬ãâ ⨢ .6¥ªæ¨ï 9http://mmresource.nm.ru/ 9.28®ªâï¡àï 2002 £.¥®à¥¬ë ¨«®¢ .¤¨¬ ¨§ ïનå १ã«ìâ ⮢ ⥮ਨ ª®¥çëå £à㯯 ¢ ¯à ¢«¥¨¨ ç áâ¨ç®£® ®¡à 饨ï â¥®à¥¬ë £à ïîâáï á«¥¤ãî騥 â¥®à¥¬ë ¨«®¢ (1872).¥®à¥¬ (1-ï ⥮६ ¨«®¢ ® áãé¥á⢮¢ ¨¨ ᨫ®¢áª¨å ¯®¤£à㯯).
DZãáâì G — ª®¥ç ï £à㯯 , |G| = n = pk m, k ≥ 1 ,p — ¯à®á⮥ ç¨á«®, (p, m) = 1. ®£¤ £à㯯 G ᮤ¥à¨â¯®¤£à㯯ã H â ªãî, çâ® |H| = pk (â ª ï ¯®¤£à㯯 §ë¢ ¥âáï ᨫ®¢áª®© ¯®¤£à㯯®© £à㯯ë G).®ª § ⥫ìá⢮. ᫨ G — ¡¥«¥¢ £à㯯 , |G| = pk m, (p, m) = 1, â® ¢ ª ç¥á⢥ H ¬®® ¢§ïâì ¯à¨¬ àã¬¯®¥âã Gp £à㯯ë G (â.
¥. ¯àï¬ãî á㬬㠢á¥å p-¯à¨¬ àëå æ¨ª«¨ç¥áª¨å £à㯯 ª ®¨ç¥áª®£®à §«®¥¨ï), ¨ ⮣¤ Gp = pk .2) ᫨ |G| = pk (â. ¥. m = 1), â® G = H.3) DZ஢¥¤¥¬ ¤®ª § ⥫ìá⢮ ¨¤ãªâ¨¢®.«ãç © 1. p ¤¥«¨â ç¨á«® |Z(G)| í«¥¬¥â®¢ æ¥âà Z(G) £à㯯ë G. § ®¡à 饨ï â¥®à¥¬ë £à ¤«ï ¡¥«¥¢ëå £à㯯 ©¤¥âáï ¯®¤£à㯯 A ¢ æ¥âॠZ(G), |A| = p. á®, çâ® A ⊳ G,|G/A| = n/p = pk−1 m < n. ᨫ㠨¤ãªâ¨¢®£® ¯à¥¤¯®«®¥¨ï, ¢ Ḡ = G/A ©¤¥âáï ¯®¤£à㯯 B̄, |B̄| = pk−1 .
® B̄ = B/A ⊂ G/A, £¤¥ A ⊆ B ⊆ G, ¯®í⮬ã |B| = |A||B/A| = ppk−1 = pk , â. ¥. B —ᨫ®¢áª ï ¯®¤£à㯯 £à㯯ë G.«ãç © 2. p ¥ ¤¥«¨â ¯®à冷ª |Z(G)| æ¥âà Z(G) £à㯯ë G. áᬮâਬ à §«®¥¨¥ £à㯯ë·∪ Ci . DZãáâì C1 , . . . , Cr — ®¤®í«¥¬¥âë¥ ª« ááë ª« ááë ᮯàï¥ëå í«¥¬¥â®¢ G = i=1,...,lᮯàï¥ëå í«¥¬¥â®¢ (â. ¥. ¢á¥ í«¥¬¥âë æ¥âà Z(G), r = |Z(G)|). ª ª ª |G| ¤¥«¨âáï p, ç¨á«® r ¥ ¤¥«¨âáï p, ©¤¥âáï ®à¡¨â Ci = Orb(xi ), r + 1 ≤ i ≤ l, â ª ï, çâ® |G|/|C(xi )| = |Ci | ¥¤¥«¨âáï p.
®£¤ |C(xi )| < n, â® ¯® ¨¤ãªâ¨¢®¬ã ¯à¥¤¯®«®¥¨î ¢ C(xi ) ©¤¥âáï ¯®¤£à㯯 H, â ª ï, çâ® |H| = pk , â. ¥. H — ᨫ®¢áª ï ¯®¤£à㯯 £à㯯ë G (H ⊆ C(xi ) ⊆ G). 1)¥®à¥¬ (2-ï ⥮६ ¨«®¢ ® ᮯà葉á⨠ᨫ®¢áª¨å ¯®¤£à㯯). DZãáâì G —ª®¥ç ï £à㯯 , |G| = pk m, k ≥ 1, (p, m) = 1. ) î¡ ï p−¯®¤£à㯯 H £à㯯ë G (â. ¥. |H| = pl , l ≤ k) ᮤ¥à¨âáï ¢ ¥ª®â®à®© ᨫ®¢áª®©p−¯®¤£à㯯¥.¡) î¡ë¥ ¤¢¥ ᨫ®¢áª¨¥ ¯®¤£à㯯ë S1 ¨ S2 ᮯàï¥ë (â. ¥.
S2 = g−1 S1 g ¤«ï ¥ª®â®à®£® g ∈ G).®ª § ⥫ìá⢮. «ãç ©, ª®£¤ m = 1 ïá¥. DZãáâì m > 1 ¨ ¯ãáâì S, |S| = pk , — ᨫ®¢áª ïp−¯®¤£à㯯 (áãé¥á⢮¢ ¨¥ ª®â®à®© ¤®ª § ® ¢ 1-®© ⥮६¥ ¨«®¢ ). áᬮâਬ á«¥¤ãî騩¯à ¢ë© H−¯®«¨£®: MH = {Sx|x ∈ G}, (Sx, a) → Sxa ¤«ï x ∈ G, a ∈ H (â. ¥. «¥¢ë¥ á¬¥ë¥ ª« ááë Sx ¯®¤£à㯯ë S c 㬮¥¨¥¬ á¯à ¢ í«¥¬¥âë ¨§ ¯®¤£à㯯ë H); ª®à४â®áâì 㬮¥¨ïïá : Sx = Sx′ ⇒ x′ = sx, ⇒ x′ a = s(xa) ⇒ Sx′ a = Sxa.
§ â¥®à¥¬ë £à ¤«ï ¯®¤£à㯯ëS: |M | = |G|/|S| = pk m/pk = m > 1, ¯à¨ í⮬ (p, m) = 1. ª ª ª pl = |H| = | St(y)|| Orb(y)| ¤«ïí«¥¬¥â y ∈ MH , â® ç¨á«® í«¥¬¥â®¢ ¢ ª ¤®© ¥®¤®í«¥¬¥â®© ®à¡¨â¥ ¯®«¨£® MH ¤¥«¨âáï p. «¥¤®¢ ⥫ì®, áãé¥áâ¢ã¥â ®¤®í«¥¬¥â ï ®à¡¨â Sx ∈ MH , x ∈ G, â. ¥. ¤«ï Sx ¨¬¥¥¬SxH = Sx. ® ⮣¤ xH ⊆ Sx, ¨ ¯®í⮬ã H ⊆ x−1 Sx. ª ª ª |x−1 Sx| = |S| = pk , â® x−1 Sxï¥âáï ᨫ®¢áª®© p−¯®¤£à㯯®©, ᮤ¥à 饩 ¨á室ãî p−¯®¤£à㯯ã H. ᫨ ¥ H — ᨫ®¢áª ï p−¯®¤£à㯯 , â.
¥. |H| = pk , â® H = x−1 Sx. ¥¬ á ¬ë¬ ¯®ª § ®, ç⮫î¡ë¥ ¤¢¥ ᨫ®¢áª¨¥ ¯®¤£à㯯ë S1 = S ¨ S2 = H ᮯàï¥ë ¬¥¤ã ᮡ®©. ®à¬ «¨§ â®à ¯®¤£à㯯ë.DZãáâì LG = L(G) — ᮢ®ªã¯®áâì ¢á¥å ¯®¤£à㯯 H £à㯯ë G, (H, g) → g−1Hg, g → G.¯à¥¤¥«¥¨¥. â ¡¨«¨§ â®à ¯®¤£à㯯ë H ¯à¨ í⮬ ¤¥©á⢨¨ £à㯯ë G ᮯà泌ﬨ St(H) ={g ∈ G|g −1 Hg = H} §ë¢ ¥âáï ®à¬ «¨§ â®à®¬ ¯®¤£à㯯ë H ¢ £à㯯¥ G (¤«ï ¥£® ¨á¯®«ì§ã¥âáﮡ®§ 票¥ NG(H)).7¥ªæ¨ï 9http://mmresource.nm.ru/â ª, NG(H) = St(H) = {g → G|g−1 Hg = H}.¥¬¬ ¢®©á⢠®à¬ «¨§ â®à NG(H).1) NG (H) — ¯®¤£à㯯 £à㯯ë G ᮤ¥à é ï ¯®¤£à㯯ã H;2) H ⊳ NG (H);3) ¥á«¨ H ⊳ K ⊆ G (â.
¥. K — ¯®¤£à㯯 £à㯯ë G, ᮤ¥à é ï ¯®¤£à㯯ã H, ¨ H —®à¬ «ì ï ¯®¤£à㯯 ¢ K), â® K ⊆ NG(H), ¨, â ª¨¬ ®¡à §®¬, NG (H) — ¨¡®«ìè ï ¯®¤£à㯯 ,ᮤ¥à é ï H ¢ ª ç¥á⢥ ®à¬ «ì®© ¯®¤£à㯯ë (ª®¥ç®, ¥á«¨ H ⊳ G, â® NG(H) = G).®ª § ⥫ìá⢮.1) ª ª ª NG (H) = St(H), â® ïá®, çâ® NG (H) (ª ª «î¡®© áâ ¡¨«¨§ â®à) — ¯®¤£à㯯 £à㯯ëG.2) ᫨ g → NG (H), â® g −1 Hg = H, â. ¥. H ⊳ NG (H) (â. ¥. H — ®à¬ «ì ï ¯®¤£à㯯 £à㯯ëNG (H)).3) ᫨ H ⊳ K ⊆ G, â® ¤«ï «î¡®£® í«¥¬¥â g ∈ K ¨¬¥¥¬ g −1 Hg = H (¯®áª®«ìªã H —®à¬ «ì ï ¯®¤£à㯯 £à㯯ë ), â.
¥. g ∈ St(H) = NG (H), ¨ ¯®í⮬ã K ⊆ NG(H). (). DZãáâì G — ª®¥ç ï£à㯯 , n = |G| = pk m, k ≥ 1, (p, m) = 1. ¥à¥§ n(p) ®¡®§ 稬 ç¨á«® ᨫ®¢áª¨å p-¯®¤£à㯯. ®£¤ :1) n(p) — ¤¥«¨â¥«ì ç¨á« n = |G|;2) n(p) = 1 + pq (â. ¥. ®áâ ⮪ ¯à¨ ¤¥«¥¨¨ ç¨á« n(p) ¯à®á⮥ ç¨á«® p à ¢® 1).®ª § ⥫ìá⢮. 1) áᬮâਬ ¯à ¢ë© G-¯®«¨£®¥®à¥¬ à¥âìï ⥮६ ¨«®¢ ® ç¨á«¥ ᨫ®¢áª¨å ¯®¤£à㯯MG = L(G) = {H|H ⊆ G},(â.