А.В. Михалёв - Лекции по высшей алгебре (1106006), страница 8
Текст из файла (страница 8)
¥.v = (a + bi)e = ae + b(ie). ᫨ ¥ ¤«ï a, b ∈ R ¨¬¥¥¬ ae + b(ie) = 0, â® (a + bi)e = ae + bie = 0,¯®í⮬ã a + bi = 0, â. ¥. a = 0, b = 0. ª ª ª dim C R−i = 1 0 6= y ∈ R−i , â® {y} — ¡ §¨á ¢ C R−i , ¨ ¯®í⮬ã {j, k = ij} — ¡ §¨á«¨¥©®£® ¯à®áâà á⢠R R−i . ª¨¬ ®¡à §®¬, {1, i, j, k} — ¡ §¨á ¢¥é¥á⢥®£® «¨¥©®£® ¯à®áâà á⢠RR= R Ri ⊕ R R−i .27¥ªæ¨ï 14http://mmresource.nm.ru/DZ®áª®«ìªã k2 = ijij = −i2 j 2 = −1, ji = −ij = −k, ¬ë ã¡¥¤ ¥¬áï, çâ® R R = H.¯à ¥¨¥ 1.
ª ª ª k = ij, â®H = R · 1+̇Ri+̇Rj +̇Rk = C · 1 + Cj(q = a + bi + cj + dk = (a + bi) + (c + di)j = ϕ + zj, y = a + bi, z = c + di ∈ C, {1, j} —¯à®áâà á⢠C K), â®y zϕ : H → M2 (C), ϕ(y + zj) =,−z̄ ȳ¡ §¨á «¨¥©®£®§¤¥áì y, z ∈ C, ï¥âáï ¨ê¥ªâ¨¢ë¬ £®¬®¬®à䨧¬®¬ (â. ¥. ¢«®¥¨¥¬) ª®«¥æ.DZ®« £ ïyN (q) = N (y + zj) = −z̄z= y ȳ + z z̄ = a2 + b2 + c2 + d2 ∈ R+ ,ȳ ã¡¥¤¨¬áï, çâ®: ) N (q) = 0 ⇔ q = 0 (â. ¥. a = b = c = d = 0);¡) N (q1 q2 ) = N (q1 )N (q2 ) ¤«ï q1 , q2 ∈ R;¢) ¥á«¨ 0 6= q = y + zj, â® q−1 = ȳ−z̄jN (q) .¯à ¥¨¥ 2.
DZãáâì n1 ¨ n2 ïîâáï á㬬 ¬¨ ç¥âëàñå ª¢ ¤à ⮢ âãà «ìëå ç¨á¥«.®£¤ n1 n2 â ª¥ ï¥âáï á㬬®© ç¥âëàñå ª¢ ¤à ⮢ âãà «ìëå ç¨á¥«.®ª § ⥫ìá⢮. «ï l = 1, 2 ¯ãáâì nl = a2l + b2l + c2l + d2l = N (ql ), £¤¥ ql = al + bli + clj + dl k ∈ H.®£¤ n1 n2 = N (q1 )N (q2 ) = N (q1 q2 ) = N (q) = a2 + b2 + c2 + d2 , £¤¥ q = q1 q2 = a + bi + cj + dk,a, b, c, d ∈ N.¯à ¥¨¥ 3 (¥®à¥¬ £à ® ç¥âëàñå ª¢ ¤à â å). ¤®¥ âãà «ì®¥ ç¨á«®ï¢«ï¥âáï á㬬®© ç¥âëàñå ª¢ ¤à ⮢ âãà «ìëå ç¨á¥« (¢ ᨫã ã¯à ¥¨ï 2, ¤®ª § ⥫ìá⢮¤®áâ â®ç® ¯à®¢¥á⨠¤«ï ¯à®á⮣® ç¨á« ).28¥ªæ¨ï 15http://mmresource.nm.ru/ 15.10¤¥ª ¡àï 2002 £.DZ।áâ ¢«¥¨¥ ª®«¥æ ¨ «¨¥©ë¥ ¯à¥¤áâ ¢«¥¨ï £à㯯.®¤ã«¨ ¤ ª®«ìæ ¬¨.DZãáâì R — ª®«ìæ® á 1. DZ®¤ «¥¢ë¬ R-¬®¤ã«¥¬ R M ¤ ª®«ì殬 R ¯®¨¬ ¥âáï ¬®¥á⢮ Mâ ª®¥, çâ®:1) (M, +) — ¡¥«¥¢ £à㯯 ;2) ®¯à¥¤¥«¥® 㬮¥¨¥ R × M ∋ (r, m) → rm ∈ M , £¤¥ r ∈ R, m ∈ M , â ª®¥, çâ®2 ) (r1 + r2 )m = r1 m + r2 m, r1 , r2 ∈ R;2¡) r(m1 + m2 ) = rm1 + rm2 , m1 , m2 ∈ M ;2¢) 1 · m = m. «®£¨ç® ®¯à¥¤¥«ï¥âáï ¯à ¢ë© R-¬®¤ã«ì MR . ¬¥ç ¨¥.
᫨ R M — «¥¢ë© R-¬®¤ã«ì, â® ®â®¡à ¥¨¥ rb : m → rm ¤«ï m ∈ M, r ∈ Rï¥âáï £®¬®¬®à䨧¬®¬ ¡¥«¥¢ëå £à㯯, ¨ ¯®í⮬ã r0 = 0, r(−m) = −rm. ª ª ª rm =(r + 0)m = rm + 0m, â® 0m = 0 ¤«ï ¢á¥å m ∈ M .DZਬ¥àë ¬®¤ã«¥©. 1) ¨¥©ë¥ ¯à®áâà á⢠K V ¤ ¯®«¥¬ K — íâ®, ¢ â®ç®áâ¨, ¬®¤ã«¨ ¤ ¯®«¥¬.2) ¡¥«¥¢ë £à㯯ë (A, +) — íâ®, ¢ â®ç®áâ¨, ¬®¤ã«¨ ¤ ª®«ì殬 Z 楫ëå ç¨á¥«.3) ᫨ K V — «¨¥©®¥ ¯à®áâà á⢮ ¨ A ∈ End(K V ) — «¨¥©ë© ®¯¥à â®à, â® K[x] V — ¬®¤ã«ì ¤ ª®«ì殬 ¬®£®ç«¥®¢ K[x], £¤¥f (x)v = f (A)(v)¤«ï f (x) ∈ K[x], v ∈ V.4) ᫨ K V — «¨¥©®¥ ¯à®áâà á⢮ ¤ ¯®«¥¬ K, â® End (K V )Và â®à®¢ End(K V )—¬®¤ã«ì ¤ ª®«ì殬 ®¯¥-((A, v) → A(v), A ∈ End(K V ), v ∈ K V ).5) ᫨ R — ¯®¤ª®«ìæ® ª®«ìæ S, â® R S — «¥¢ë© R-¬®¤ã«ì((r, s) → rs, r ∈ R, s ∈ S). ç áâ®áâ¨, R R — «¥¢ë© R-¬®¤ã«ì ¤«ï «î¡®£® ª®«ìæ R. ¬¥ç ¨¥.
®¤ã«ì R M ¤ ª®«ì殬 R ¬®¥â ¥ ¨¬¥âì ¡ §¨á (íâ® ®â«¨ç ¥â ¬®¤ã«¨ ®â«¨¥©ëå ¯à®áâà áâ¢; ¯à¨¬¥à, ¡¥«¥¢ £à㯯 Z Z2 ¥ ¨¬¥¥â Z-¡ §¨á ).®¬®¬®à䨧¬ë R-¬®¤ã«¥©.DZãáâì R M ¨ R N — «¥¢ë¥ R-¬®¤ã«¨. â®¡à ¥¨¥ f : R M → R N §ë¢ ¥âáï £®¬®¬®à䨧¬®¬R-¬®¤ã«¥©, ¥á«¨ ) f — £®¬®¬®à䨧¬ ¡¥«¥¢ëå £à㯯 (â. ¥. f (m1 + m2 ) = f (m1 ) + f (m2 ) ¤«ï m1 , m2 ∈ M );¡) f (rm) = rf (m) ¤«ï r ∈ R, m ∈ M .¨¥ªâ¨¢ë© £®¬®¬®à䨧¬ f : R M → R N R-¬®¤ã«¥© §ë¢ ¥âáï ¨§®¬®à䨧¬®¬ R-¬®¤ã«¥©, ¢í⮬ á«ãç ¥ ¡ã¤¥¬ £®¢®à¨âì, çâ® R-¬®¤ã«¨ R M ¨ R N ¨§®¬®àäë (R M ∼= R N ). á®, çâ® ®â®è¥¨¥¨§®¬®à䨧¬ ï¥âáï ®â®è¥¨¥¬ íª¢¨¢ «¥â®áâ¨.DZ®¤¬®¤ã«¥¬ R N R-¬®¤ã«ï R M §ë¢ ¥âáï ¯®¤£à㯯 N ¡¥«¥¢®© £à㯯ë (M, +) â ª ï, çâ®RN ⊆ N (â. ¥.
rn ∈ N ¤«ï ¢á¥å r ∈ R, n ∈ N ).1. ᫨ f : R M → R N — £®¬®¬®à䨧¬ R-¬®¤ã«¥©, â® Ker f = {m ∈ R M |f (m) = 0}(ï¤à® £®¬®¬®à䨧¬ f ) ¨ Im f = {n ∈ R N |n = f (m), m ∈ R M } (®¡à § £®¬®¬®à䨧¬ f ) ïîâáﯮ¤¬®¤ã«ï¬¨ (ᮡá⢥®, ¢ R M ¨ ¢ R N ). ¥©á⢨⥫ì®, ¥á«¨ m ∈ Ker f , â. ¥. f (m) = 0, ¨ ¬¥ç ¨¥29¥ªæ¨ï 15http://mmresource.nm.ru/r ∈ R, â® f (rm) = rf (m) = r · 0 = 0, â. ¥. rm ∈ Ker f . ᫨ n = f (m) ¤«ï m ∈ R Mrn = rf (m) = f (rm) ∈ Im f .2. DZ®¤¬®¤ã«¨ R I ⊆ R R — íâ® ¢ â®ç®á⨠«¥¢ë¥ ¨¤¥ «ë R I ª®«ìæ R. ¬¥ç ¨¥¨ r ∈ R, â® ªâ®à¬®¤ã«ì.DZãáâì R U ⊆ R M — ¯®¤¬®¤ã«ì.
ªâ®à£à㯯 ¡¥«¥¢ëå £à㯯 M/U ¯à¥¢à é ¥âáï ¢ R-¬®¤ã«ì,¥á«¨ ¯®«®¨âì ¤«ï r ∈ R ¨ m ∈ Mr(m + U ) = rm + U.⮠㬮¥¨¥ í«¥¬¥â r ∈ R ®¯à¥¤¥«¥® ª®à४â®. ¥©á⢨⥫ì®, ¥á«¨ m + R U = m′ + R U,m′ ∈ M , â® m′ = m + u, u ∈ R U , ¨ ¯®í⮬ã rm′ = rm + ru, ru ∈ R U, â. ¥. rm′ + U = rm + U .DZ஢¥à¨¬ ãá«®¢¨ï 2 ), 2¡) ¨ 2¢).2 ) ᫨ r1 , r2 ∈ R, â®(r1 + r2 )(m + U ) = (r1 + r2 )m + U = r1 m + r2 m + U == (r1 m + U ) + (r2 m + U ) = r1 (m + U ) + r2 (m + U ).2¡) ᫨ m1 , m2 ∈ M , â®r((m1 + U ) + (m2 + U )) = r((m1 + m2 ) + U ) == r(m1 + m2 ) + U = (rm1 + rm2 ) + U == (rm1 + U ) + (rm2 + U ) = r(m1 + U ) + r(m2 + U ).2¢) 1(m + U ) = 1 · m + U = m + U . ®¨ç¥áª¨© £®¬®¬®à䨧¬ ¨ ä ªâ®à¬®¤ã«ì. ᫨ R U — ¯®¤¬®¤ã«ì R-¬®¤ã«ï R M , â® ª ®¨ç¥áª®¥ ®â®¡à ¥¨¥πU : R M → R M/U ,πU (m) = m + U,m ∈ RM ,ï¥âáï áîàê¥ªâ¨¢ë¬ £®¬®¬®à䨧¬®¬ R-¬®¤ã«¥©. ¥©á⢨⥫ì®, ¤«ï r ∈ R, m ∈ R M ¨¬¥¥¬:π(rm) = rm + U = r(m + U ) = r(πU (m)).1 (R).
DZãáâì f : R M → R N — áîàꥪ⨢멣®¬®¬®à䨧¬ R-¬®¤ã«¥©, π : R M → R M/ Ker f — ª ®¨ç¥áª¨© £®¬®¬®à䨧¬. ®£¤ áãé¥áâ¢ã¥â¨ ¥¤¨áâ¢¥ë© ¨§®¬®à䨧¬ R-¬®¤ã«¥© ϕ : R M/ Ker f → R N â ª®©, çâ® f = ϕπ.®ª § ⥫ìá⢮. ᨫã â¥®à¥¬ë ® £®¬®¬®à䨧¬ å ¤«ï ( ¡¥«¥¢ëå) £à㯯 áãé¥áâ¢ã¥â ¨ ¥¤¨áâ¢¥ë© ¨§®¬®à䨧¬ ¡¥«¥¢ëå £à㯯 ϕ : (M/ Ker f, +) → (N, +) â ª®©, çâ® f = ϕπ, ¨¬¥®,ϕ(m + Ker f ) = f (m). áâ ñâáï «¨èì § ¬¥â¨âì, ç⮥®à¥¬ ® £®¬®¬®à䨧¬¥ ¤«ï ¬®¤ã«¥©ϕ(r(m + Ker f )) = ϕ(rm + Ker f ) = f (rm) = rf (m) = rϕ(m + Ker f ),â. ¥.
çâ® ϕ : R M/ Ker f → R N — £®¬®¬®à䨧¬ R-¬®¤ã«¥©. ¯à ¥¨¥. ®ª ¨â¥ «®£ 2-© ¨ 3-© â¥®à¥¬ë ® £®¬®¬®à䨧¬ å ¤«ï R-¬®¤ã«¥©.¥¯à¨¢®¤¨¬ë¥ ¬®¤ã«¨.¥ã«¥¢®© R-¬®¤ã«ì R M §ë¢ ¥âáï ¥¯à¨¢®¤¨¬ë¬ ¬®¤ã«¥¬, ¥á«¨ ¢ R M ¢á¥ R-¯®¤¬®¤ã«¨ ¨áç¥à¯ë¢ îâáï ã«¥¢ë¬ ¯®¤¬®¤ã«¥¬ ¨ ¢á¥¬ ¬®¤ã«¥¬ M (â. ¥. à¥èñ⪠¯®¤¬®¤ã«¥© L(R M ) á®á⮨⨧ {0, M }).30¥ªæ¨ï 15http://mmresource.nm.ru/DZਬ¥à 1. ᫨ K — ¯®«¥, K V — «¨¥©®¥ ¯à®áâà á⢮, dim K V = 1, â® K V — ¥¯à¨¢®¤¨¬ë©K-¬®¤ã«ì.DZਬ¥à 2. ᫨ A — ¡¥«¥¢ £à㯯 , â® ZA — ¥¯à¨¢®¤¨¬ë© Z-¬®¤ã«ì ⮣¤ ¨ ⮫쪮 ⮣¤ ,ª®£¤ A — ª®¥ç ï æ¨ª«¨ç¥áª ï £à㯯 (â. ¥. A ∼= Zp , p — ¯à®á⮥ ç¨á«®).DZਬ¥à 3. ᫨ K V — «¨¥©®¥ ¯à®áâà á⢮, End(K V ) — ª®«ìæ® «¨¥©ëå ®¯¥à â®à®¢, â®End( V ) V — ¥¯à¨¢®¤¨¬ë© End(K V )-¬®¤ã«ì.¥©á⢨⥫ì®, ¤«ï «î¡®£® ¥ã«¥¢®£® í«¥¬¥â 0 6= v ∈ V ¨ «î¡®£® í«¥¬¥â w ∈ V ©¤ñâáﮯ¥à â®à A ∈ End(K V ) â ª®©, çâ® A(v) = w.
ª¨¬ ®¡à §®¬, «î¡®© ¥ã«¥¢®© End(K V )-¯®¤¬®¤ã«ìᮢ¯ ¤ ¥â á V . K¨ª«¨ç¥áª¨¥ R-¬®¤ã«¨.®¤ã«ì R M ¤ ª®«ì殬 R §ë¢ ¥âáï æ¨ª«¨ç¥áª¨¬, ¥á«¨ ©¤ñâáï í«¥¬¥â m ∈ R M â ª®©,çâ® R M = Rm (â. ¥. ª ¤ë© í«¥¬¥â R-¬®¤ã«ï M ¨¬¥¥â ¢¨¤ rm, r ∈ R), ¢ í⮬ á«ãç ¥ â ª®©í«¥¬¥â m §ë¢ ¥âáï æ¨ª«¨ç¥áª¨¬ ®¡à §ãî騬 R-¬®¤ã«ï R M .¥¬¬ .1) ¥¯à¨¢®¤¨¬ë© R-¬®¤ã«ì R M ï¥âáï æ¨ª«¨ç¥áª¨¬ R-¬®¤ã«¥¬.2) ᫨ R M = Rm — 横«¨ç¥áª¨© R-¬®¤ã«ì, m — ¥£® 横«¨ç¥áª¨© ®¡à §ãî騩, â® Ann R m ={r ∈ R|rm = 0} — «¥¢ë© ¨¤¥ « ¢ ª®«ìæ¥ R ¨ R M ∼= R R/ Ann R m.®ª § ⥫ìá⢮.
1) DZãáâì 0 6= m ∈ R M , ⮣¤ 0 6= m ∈ Rm. ª ª ª Rm — ¥ã«¥¢®©¯®¤¬®¤ã«ì ¨ R M — ¥¯à¨¢®¤¨¬ë© R-¬®¤ã«ì, â® Rm = M , â. ¥. M — 横«¨ç¥áª¨© R-¬®¤ã«ì áæ¨ª«¨ç¥áª¨¬ ®¡à §ãî騬 m.2) DZãáâì R M = Rm. áᬮâਬ £®¬®¬®à䨧¬ R-¬®¤ã«¥©∆ : R R → R M = Rm,∆(r) = rm¤«ï r ∈ R. ª ª ª Ker ∆ = {r ∈ R|rm = 0} = Ann R m, â® ¢ ᨫã â¥®à¥¬ë ® £®¬®¬®à䨧¬ å ¤«ï R-¬®¤ã«¥©R R/ Ann R m∼= Rm = R M . ¬¥ç ¨¥.
᫨ R M , R NRM→ RN }— R-¬®¤ã«ì ¤ ª®«ì殬 R, â® ¬®¥á⢮ Hom(R M , R N ) = {f¢á¥å R-£®¬®¬®à䨧¬®¢ ¨§ R M ¢ R N á ®¯¥à 樥© á«®¥¨ï(f + g)(m) = f (m) + g(m)¤«ï f, g ∈ Hom(R M , R N ):ï¥âáï ¡¥«¥¢®© £à㯯®©. ᫨ ¡¥«¥¢ã £à㯯ã End(R M ) = Hom(R M , R M ) ¤¥«¨âì 㬮¥¨¥¬ (f g)(m) = f (g(m)), f, g ∈End(R M ), â® ¯®«ã稬 ª®«ìæ®, §ë¢ ¥¬®¥ ª®«ì殬 í¤®¬®à䨧¬®¢ R-¬®¤ã«ï R M .
᫨ ª®«ìæ® Rï¥âáï K- «£¥¡à®© ¤ ¯®«¥¬ K, â® R-¬®¤ã«ì R M ï¥âáï â ª¥ ¨ «¨¥©ë¬ ¯à®áâà á⢮¬ ¤ ¯®«¥¬ K.¯à ¥¨¥ 1. ᫨ α : RN → R N ′ — £®¬®¬®à䨧¬ R-¬®¤ã«¥©, â®α∗ : Hom(R M , R N ) → Hom(R M , R N ′ ),α∗ (f ) = αf¤«ï f ∈ Hom(R M , R N ),ï¥âáï £®¬®¬®à䨧¬®¬ ¡¥«¥¢ëå £à㯯.¯à ¥¨¥ 2. ᫨ β : RM → RM ′ — £®¬®¬®à䨧¬ R-¬®¤ã«¥©, â®β ∗ : Hom(R M ′ , R N ) → Hom(R M , R N ),β ∗ (g) = g⤫ï g ∈ Hom(R M ′ , R N ),31¥ªæ¨ï 15http://mmresource.nm.ru/ï¥âáï £®¬®¬®à䨧¬®¬ ¡¥«¥¢ëå £à㯯.¥¬¬ (ãà ).
1) ᫨ R U ¨ R V — ¥¯à¨¢®¤¨¬ë¥ R-¬®¤ã«¨ ¨ 0 6= f : R U → RV — ¥ã«¥¢®©6 R V , ⮣®¬®¬®à䨧¬ R-¬®¤ã«¥©, â® f — ¨§®¬®à䨧¬ R-¬®¤ã«¥© (¤à㣨¬¨ á«®¢ ¬¨, ¥á«¨ R U ∼=Hom(R U , R V ) = 0).2) ᫨ R M — ¥¯à¨¢®¤¨¬ë© R-¬®¤ã«ì, â® ¥£® ª®«ìæ® í¤®¬®à䨧¬®¢ End(R M ) ï¥âáï ⥫®¬.3) ᫨ R — ª®¥ç®¬¥à ï C- «£¥¡à , R M — ¥¯à¨¢®¤¨¬ë© R-¬®¤ã«ì, dim C M < ∞, â®End(R M ) ∼= C.®ª § ⥫ìá⢮. 1) ᫨ f 6= 0, â® Ker f 6= R M , ¯®í⮬ã Ker f = 0, â® f — ¨ê¥ªæ¨ï. «¥¥,Im f 6= 0, ¨ ¯®í⮬ã Im f = R N , â. ¥.
f — áîàꥪæ¨ï. â ª, f — ¨§®¬®à䨧¬ R-¬®¤ã«¥©.2) ᫨ R M — ¥¯à¨¢®¤¨¬ë© R-¬®¤ã«ì, â® ¢á¥ ¥ã«¥¢ë¥ í«¥¬¥âë 0 6= f ∈ End(R M ) ®¡à ⨬ë,â. ¥. End(R M ) — ⥫®.3) ª ª ª C ⊆ Z(R) ⊆ R, â® C ⊆ Z(End(R M )) ⊆ End(C M ) ∼= Mn (C), £¤¥ n = dim C M . â ª,End R M — ª®¥ç®¬¥à ï C- «£¥¡à á ¤¥«¥¨¥¬. DZ®í⮬ã, End(R M ) ∼= C (â. ¥. End(R M ) =C · 1M ).
DZàï¬ë¥ áã¬¬ë ¬®¤ã«¥©.¥èïï ª®áâàãªæ¨ï: ᫨ R U ¨ R V — R-¬®¤ã«¨, â® ®¯à¥¤¥«¨¬ R M = R U ⊕ R V = {(u, v)|u ∈UR , v ∈ R V } ª ª ¯àï¬ãî á㬬㠡¥«¥¢ëå £à㯯, ¢ ª®â®à®© r(u, v) = (ru, rv) ¤«ï r ∈ R. ᫨U ′ = {(u, 0)|u ∈ U }, V ′ = {(0, v)|v ∈ V }, â® R U ′ ¨ R V ′ — R-¬®¤ã«¨ ¢ V , R U ′ + R V ′ = R M ,′′R U ∩ R V = {0}.ãâà¥ïï ª®áâàãªæ¨ï: ᫨ R M — R-¬®¤ã«ì, R U , R V — R-¯®¤¬®¤ã«¨ ¢ R M , R M = R U + R V¨ R U ∩ R V = {0}, â® R M §ë¢ ¥âáï ¯àאַ© á㬬®© ᢮¨å ¯®¤¬®¤ã«¥© (¢ í⮬ á«ãç ¥ m = u + v,u ∈ U , v ∈ V , ¨ íâ® ¯à¥¤áâ ¢«¥¨¥ ¤«ï í«¥¬¥â m ∈ R M ¥¤¨á⢥®), ¯à¨ í⮬ R M ∼= RU ⊕ RV .∼∼. R U ⊕ R V /R U = R V ; R U ⊕ R V /R U = VR .¥©á⢨⥫ì®, à áᬮâਬ ¯à®¥ªæ¨¨ ¯¥à¢®¥ ¨ ¢â®à®¥ ¯àï¬ë¥ á« £ ¥¬ë¥ ¨ ¯à¨¬¥¨¬ ⥮६㮠£®¬®¬®à䨧¬ å.. 1) ᫨ R M = R B ⊕ R C, π : R M → R M — ¯à®¥ªæ¨ï ¯¥à¢®¥ ¯àאַ¥ á« £ ¥¬®¥, â®π 2 = π ∈ End(R M ).2) ᫨ π 2 = π ∈ End(R M ), â®MR = R Im π ⊕ R Ker π. ¬¥ç ¨¥¥¬¬ ®ª § ⥫ìá⢮.1) ᫨ m = b + c ∈ R M , £¤¥ m ∈ M , b ∈ B, c ∈ C, â®(π 2 )(m) = π(π(m)) = π(b) = b = π(m),â.