Диссертация (1105604), страница 22
Текст из файла (страница 22)
— Vol. 12, no. 2. — Pp. 436–439. — URL: http://dx.doi.org/10.1021/cm990486m.43. Phillips James C., Kleinman Leonard. New Method for Calculating Wave Functions in Crystalsand Molecules // Phys. Rev. — 1959. — Oct. — Vol. 116. — Pp. 287–294. — URL: http://link.aps.org/doi/10.1103/PhysRev.116.287.10244. Ohtani Bunsho, Ogawa Yoshimasa, Nishimoto Seiichi. Photocatalytic Activity of AmorphousAnatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions // The Journal of Physical Chemistry B. — 1997. — Vol.
101, no. 19. — Pp. 3746–3752. — URL:http://pubs.acs.org/doi/abs/10.1021/jp962702%2B.45. Fingerprints of order and disorder in the electronic and optical properties of crystalline and amorphous TiO2 / M. Landmann, T. Köhler, S. Köppen et al. // Phys. Rev. B. — 2012. — Aug. —Vol. 86. — P. 064201. — URL: http://link.aps.org/doi/10.1103/PhysRevB.86.064201.46. Zhai Hua-Jin, Wang Lai-Sheng. Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n- (n = 1-10) Using Photoelectron Spectroscopy // Journal of the American Chemical Society. — 2007.
— Vol. 129, no. 10. — Pp. 3022–3026. — PMID: 17300196.URL: http://dx.doi.org/10.1021/ja068601z.47. Colbeau-Justin C., Kunst M., Huguenin D. Structural influence on charge-carrier lifetimes in TiO2powders studied by microwave absorption // Journal of Materials Science. — 2003. — Vol. 38,no. 11. — Pp. 2429–2437. — URL: http://dx.doi.org/10.1023/A:1023905102094.48. Study on {ESR} and inter-related properties of vacuum-dehydrated nanotubed titanic acid / Shunli Zhang, Wei Li, Zhensheng Jin et al. // Journal of Solid State Chemistry.
— 2004. — Vol.177, no. 4–5. — Pp. 1365 – 1371. — URL: http://www.sciencedirect.com/science/article/pii/S0022459603006406.49. Poznyak S.K, Kokorin A.I, Kulak A.I. Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes // Journal of ElectroanalyticalChemistry. — 1998. — Vol. 442, no. 1–2. — Pp.
99 – 105. — URL: http://www.sciencedirect.com/science/article/pii/S0022072897004580.50. Pedraza Franscisco, Vazquez Armando. Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3 // Journal of Physics and Chemistry of Solids. — 1999. — Vol. 60, no. 4.— Pp. 445 – 448. — URL: http://www.sciencedirect.com/science/article/pii/S0022369798003151.51. Cassaignon Sophie, Koelsch Magali, Jolivet Jean-Pierre.
Selective synthesis of brookite, anataseand rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid // Journal of Materials Science. — 2007. — Vol. 42, no. 16. — Pp. 6689–6695. — URL: http://dx.doi.org/10.1007/s10853-007-1496-y.52. Synthesis of excellent visible-light responsive TiO2 - N photocatalyst by a homogeneousprecipitation-solvothermal process / Shu Yin, Yohei Aita, Masakazu Komatsu et al. // J. Mater.Chem.
— 2005. — Vol. 15. — Pp. 674–682. — URL: http://dx.doi.org/10.1039/B413377C.53. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides // Progress in SolidState Chemistry. — 1988. — Vol. 18, no. 4. — Pp. 259 – 341. — URL: http://www.sciencedirect.com/science/article/pii/0079678688900052.10354. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks /P.
Yang, D. Zhao, D.I. Margolese et al. // Nature. — 1998. — Vol. 396, no. 6707. — Pp. 152–155.— cited By 2033. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032511881&doi=10.1038%2f24132&partnerID=40&md5=99d3b18860da523b4a84fccefd738d45.55. Zhang Rubing, Gao Lian. Preparation of nanosized titania by hydrolysis of alkoxide titanium inmicelles // Materials Research Bulletin. — 2002. — Vol.
37, no. 9. — Pp. 1659 – 1666. — URL:http://www.sciencedirect.com/science/article/pii/S0025540802008176.56. Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions / Shu Yin,Yoshinobu Fujishiro, Jihuai Wu et al. // Journal of Materials Processing Technology. — 2003.— Vol. 137, no. 1–3. — Pp. 45 – 48. — {IUMRS} {BB}. URL: http://www.sciencedirect.com/science/article/pii/S0924013602010658.57. Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermalconditions / Yurii V Kolen’ko, Alexander A Burukhin, Bulat R Churagulov, Nikolai N Oleynikov //Materials Letters.
— 2003. — Vol. 57, no. 5–6. — Pp. 1124 – 1129. — URL: http://www.sciencedirect.com/science/article/pii/S0167577X02009436.58. Hydrothermal synthesis of nanocrystalline anatase from aqueous solutions of titanyl sulfate forphotocatalytic applications / V. D. Maksimov, A. S. Shaporev, V. K. Ivanov et al. // TheoreticalFoundations of Chemical Engineering. — 2009. — Vol. 43, no. 5. — P. 713. — URL: http://dx.doi.org/10.1134/S0040579509050169.59. Hydrothermal synthesis of efficient TiO2-based photocatalysts / V. K. Ivanov, V. D. Maksimov,A. S. Shaporev et al. // Russian Journal of Inorganic Chemistry. — 2010.
— Vol. 55, no. 2. —Pp. 150–154. — URL: http://dx.doi.org/10.1134/S0036023610020026.60. Synthesis of superfine titania via high-temperature hydrolysis of titanium(IV) bis(ammonium lactato) dihydroxide / D. A. Matolygina, A. E. Baranchikov, V. K. Ivanov, Yu. D. Tret’yakov // Doklady Chemistry. — 2011. — Vol. 441, no. 2. — Pp. 361–364. — URL: http://dx.doi.org/10.1134/S0012500811120019.61. Pseudo-Cube Shaped Brookite (TiO2) Nanocrystals Synthesized by an Oleate-Modified Hydrothermal Growth Method / Yukiaki Ohno, Koji Tomita, Yukihiro Komatsubara et al. // Crystal Growth& Design.
— 2011. — Vol. 11, no. 11. — Pp. 4831–4836. — URL: http://dx.doi.org/10.1021/cg2006265.62. Hydrothermal synthesis of TiO2 nano-particles using novel water-soluble titanium complexes /Koji Tomita, Makoto Kobayashi, Valery Petrykin et al. // Journal of Materials Science. — 2008.— Vol. 43, no. 7. — Pp. 2217–2221. — URL: http://dx.doi.org/10.1007/s10853-007-2113-9.63. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 andNi0.5Zn0.5Fe2O4 powders / Pavel E.
Meskin, Vladimir K. Ivanov, Alexander E. Barantchikov104et al. // Ultrasonics Sonochemistry. — 2006. — Vol. 13, no. 1. — Pp. 47 – 53. — URL:http://www.sciencedirect.com/science/article/pii/S1350417705000039.64. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia / P. E. Meskin, A. I. Gavrilov, V. D. Maksimov et al. // Russian Journal of InorganicChemistry. — 2007. — Vol. 52, no. 11. — Pp.
1648–1656. — URL: http://dx.doi.org/10.1134/S0036023607110022.65. Photocatalytic activity of nanostructured titanium dioxide from diffusion flame synthesis / Anna Moiseev, Fei Qi, Joachim Deubener, Alfred Weber // Chemical Engineering Journal.
— 2011.— Vol. 170, no. 1. — Pp. 308 – 315. — URL: http://www.sciencedirect.com/science/article/pii/S1385894711003627.66. Trommer Rafael M, Bergmann Carlos P et al. Flame Spray Technology. — Springer, 2015.67. Preparation of nanocrystalline titania powder via aerosol pyrolysis of titanium tetrabutoxide /PP Ahonen, EI Kauppinen, JC Joubert et al. // Journal of materials research. — 1999.
— Vol. 14,no. 10. — Pp. 3938–3948.68. Akhtar M. Kamal, Xiong Yun, Pratsinis Sotiris E. Vapor synthesis of titania powder by titaniumtetrachloride oxidation // Journal of Aerosol Science. — 1991. — Vol. 22. — Pp. S35 – S38. —URL: http://www.sciencedirect.com/science/article/pii/S002185020580028X.69. Titania Polymorphs by Soft Chemistry: Is There a Common Structural Pattern? / Milen Gateshki,Shu Yin, Yang Ren, Valeri Petkov // Chemistry of Materials. — 2007.
— Vol. 19, no. 10. —Pp. 2512–2518. — URL: http://dx.doi.org/10.1021/cm0630587.70. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2 / Hengbo Yin, Yuji Wada, Takayuki Kitamura et al. // Journal of Materials Chemistry. — 2001. —Vol. 11, no. 6. — Pp. 1694–1703.71. Preparation of stable anatase-type TiO2 and its photocatalytic performance / M Inagaki, Y Nakazawa, M Hirano et al. // International Journal of Inorganic Materials.
— 2001. — Vol. 3, no. 7. —Pp. 809 – 811. — URL: http://www.sciencedirect.com/science/article/pii/S1466604901001763.72. Yanagisawa Kazumichi, Ovenstone James. Crystallization of Anatase from Amorphous TitaniaUsing the Hydrothermal Technique: Effects of Starting Material and Temperature // The Journal of Physical Chemistry B. — 1999. — Vol. 103, no. 37. — Pp. 7781–7787. — URL:http://dx.doi.org/10.1021/jp990521c.73. Yanagisawa Kazumichi, Ioku Koji, Yamasaki Nakamichi. Formation of Anatase Porous Ceramicsby Hydrothermal Hot-Pressing of Amorphous Titania Spheres // Journal of the American CeramicSociety.
— 1997. — Vol. 80, no. 5. — Pp. 1303–1306. — URL: http://dx.doi.org/10.1111/j.1151-2916.1997.tb02982.x.10574. Zhang Hengzhong, Banfield Jillian F. Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania // Chemistry of Materials. — 2002. —Vol. 14, no. 10. — Pp. 4145–4154. — URL: http://dx.doi.org/10.1021/cm020072k.75. Zhang Hengzhong, Finnegan Michael, Banfield Jillian F. Preparing Single-Phase NanocrystallineAnatase from Amorphous Titania with Particle Sizes Tailored by Temperature // Nano Letters. —2001.