Диссертация (1105604), страница 24
Текст из файла (страница 24)
Chebotaeva, Lada V. Yashina et al. // Mendeleev Communications. —Vol. 23, no. 1. —Pp. 11 – 13. —2013. —URL: http://www.sciencedirect.com/science/article/pii/S0959943613000047.112. Park Jong Hyeok, Kim Sungwook, Bard Allen J. Novel Carbon-Doped TiO2 Nanotube Arrays withHigh Aspect Ratios for Efficient Solar Water Splitting // Nano Letters. — 2006. — Vol. 6, no. 1.— Pp. 24–28. — PMID: 16402781. URL: http://dx.doi.org/10.1021/nl051807y.113. Innovative visible light-activated sulfur doped TiO2 films for water treatment / Changseok Han,Miguel Pelaez, Vlassis Likodimos et al. // Applied Catalysis B: Environmental.
— 2011. —Vol. 107, no. 1–2. — Pp. 77 – 87. — URL: http://www.sciencedirect.com/science/article/pii/S0926337311003158.114. Abe Ryu. Recent progress on photocatalytic and photoelectrochemical water splitting under visiblelight irradiation // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. —2010. — Vol. 11, no. 4. — Pp. 179 – 209. — URL: http://www.sciencedirect.com/science/article/pii/S1389556711000050.109115.
Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2 / Youngmin Cho, Wonyong Choi, Chung-Hak Lee et al. // Environmental Science & Technology. — 2001.— Vol. 35, no. 5. — Pp. 966–970. — PMID: 11351543. URL: http://dx.doi.org/10.1021/es001245e.116. Comment on ”Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2̃ Film-/Jacques E Moser, Dimitrios Noukakis, Udo Bach et al. // Journal of Physical Chemistry B.
—1998. — Vol. 102. — Pp. 3649–3650.117. Photochemical cleavage of water by photocatalysis / Enrico Borgarello, John Kiwi, Ezio Pelizzettiet al. // Nature. — 1981. — Vol. 289, no. 5794. — Pp. 158–160.118. Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for EfficientVisible-Light Hydrogen Generation / Zhi Wei Seh, Shuhua Liu, Michelle Low et al. // AdvancedMaterials. — 2012.
— Vol. 24, no. 17. — Pp. 2310–2314. — URL: http://dx.doi.org/10.1002/adma.201104241.119. A Yolk@Shell Nanoarchitecture for Au/TiO2 Catalysts / Ilkeun Lee, Ji Bong Joo, Yadong Yin,Francisco Zaera // Angewandte Chemie International Edition. — 2011. — Vol. 50, no. 43. —Pp. 10208–10211. — URL: http://dx.doi.org/10.1002/anie.201007660.120. Hirakawa Tsutomu, Kamat Prashant V. Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters // Langmuir. — 2004. — Vol.
20, no. 14. — Pp. 5645–5647. —PMID: 16459570. URL: http://dx.doi.org/10.1021/la048874c.121. Брандт Николай Борисович, Кульбачинский Владимир Анатольевич. Квазичастицы в физикеконденсированного состояния. — Физматлит М., 2005.122. Kim Franklin, Song Jae Hee, Yang Peidong. Photochemical Synthesis of Gold Nanorods // Journalof the American Chemical Society. — 2002.
— Vol. 124, no. 48. — Pp. 14316–14317. — PMID:12452700. URL: http://dx.doi.org/10.1021/ja028110o.123. Shape effects in plasmon resonance of individual colloidal silver nanoparticles / J. J. Mock, M. Barbic, D. R. Smith et al. // The Journal of Chemical Physics. — 2002. — Vol. 116, no. 15.
—Pp. 6755–6759. — URL: http://dx.doi.org/10.1063/1.1462610.124. Atay Tolga, Song Jung-Hoon, Nurmikko Arto V. Strongly Interacting Plasmon Nanoparticle Pairs:From Dipole-Dipole Interaction to Conductively Coupled Regime // Nano Letters. — 2004. —Vol. 4, no. 9. — Pp. 1627–1631. — URL: http://dx.doi.org/10.1021/nl049215n.125. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor / Scott K.
Cushing, Jiangtian Li, Fanke Meng et al. // Journal of the American Chemical Society. — 2012. — Vol. 134, no. 36. — Pp. 15033–15041. — PMID: 22891916. URL:http://dx.doi.org/10.1021/ja305603t.110126. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substratesvia STEM/EELS / Guoliang Li, Charles Cherqui, Nicholas W. Bigelow et al. // Nano Letters.
—2015. — Vol. 15, no. 5. — Pp. 3465–3471. — PMID: 25845028. URL: http://dx.doi.org/10.1021/acs.nanolett.5b00802.127. Tian Yang, Tatsuma Tetsu. Mechanisms and Applications of Plasmon-Induced Charge Separationat TiO2 Films Loaded with Gold Nanoparticles // Journal of the American Chemical Society. —2005. — Vol. 127, no. 20. — Pp. 7632–7637. — PMID: 15898815. URL: http://dx.doi.org/10.1021/ja042192u.128. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles / Akihiro Furube, Luchao Du, Kohjiro Hara et al.
// Journal of the American Chemical Society. — 2007.— Vol. 129, no. 48. — Pp. 14852–14853. — PMID: 17994750. URL: http://dx.doi.org/10.1021/ja076134v.129. Strong Coupling between ZnO Excitons and Localized Surface Plasmons of Silver NanoparticlesStudied by STEM-EELS / Jiake Wei, Nan Jiang, Jia Xu et al. // Nano Letters. — 2015. — Vol. 15,no.
9. — Pp. 5926–5931. — PMID: 26237659. URL: http://dx.doi.org/10.1021/acs.nanolett.5b02030.130. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles / Giovanni Bertoni, Filippo Fabbri, Marco Villani et al. // Scientific reports. — 2016. — Vol. 6.131. Band alignment of rutile and anatase TiO2 / D.O. Scanlon, C.W. Dunnill, J. Buckeridgeet al. // Nature Materials.
—2013. —Vol. 12, no. 9. —Pp. 798–801. —cited By544. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883141002&doi=10.1038%2fnmat3697&partnerID=40&md5=cf3a37f040a378c422db114f675c830a.132. How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2 / Ren Su, Ralf Bechstein,Lasse Sø et al. // The Journal of Physical Chemistry C.
— 2011. — Vol. 115, no. 49. — Pp. 24287–24292. — URL: http://dx.doi.org/10.1021/jp2086768.133. Universal energy-level alignment of molecules on metal oxides / Mark T Greiner, Michael G Helander, Wing-Man Tang et al. // Nature materials. — 2012. — Vol. 11, no. 1. — Pp. 76–81.134. Serpone N., Emeline A. V. Semiconductor Photocatalysis - Past, Present, and Future Outlook // TheJournal of Physical Chemistry Letters. — 2012.
— Vol. 3, no. 5. — Pp. 673–677. — PMID:26286164. URL: http://dx.doi.org/10.1021/jz300071j.135. Serpone Nick, Borgarello Enrico, Gratzel Michael. Visible light induced generation of hydrogenfrom H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electrontransfer // J. Chem. Soc., Chem. Commun. — 1984. — Pp. 342–344.
— URL: http://dx.doi.org/10.1039/C39840000342.111136. Evans J. E., Springer K. W., Zhang J. Z. Femtosecond studies of interparticle electron transfer ina coupled CdS-TiO2 colloidal system // The Journal of Chemical Physics. — 1994. — Vol. 101,no. 7. — Pp. 6222–6225. — URL: http://dx.doi.org/10.1063/1.468376.137. Robert Didier. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneousphotocatalysis applications // Catalysis Today.
— 2007. — Vol. 122, no. 1–2. — Pp. 20 – 26.— Materials, Applications and Processes in Photocatalysis. URL: http://www.sciencedirect.com/science/article/pii/S0920586107000545.138. Photocatalytic oxidation of 2,4,6-trinitrotoluene in the presence of ozone under irradiation with{UV} and visible light / D. Tomova, V. Iliev, S. Rakovsky et al. // Journal of Photochemistryand Photobiology A: Chemistry. — 2012. — Vol. 231, no. 1. — Pp. 1 – 8. — URL: http://www.sciencedirect.com/science/article/pii/S1010603011005107.139. Yang Xiujuan, Tamai Naoto. How fast is interfacial hole transfer? In situ monitoring of carrierdynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy // Phys. Chem.
Chem.Phys. — 2001. — Vol. 3. — Pp. 3393–3398. — URL: http://dx.doi.org/10.1039/B101721G.140. Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2Nanocomposites / Gonghu Li, Nada M. Dimitrijevic, Le Chen et al. // The Journal of PhysicalChemistry C. — 2008. — Vol.
112, no. 48. — Pp. 19040–19044. — URL: http://dx.doi.org/10.1021/jp8068392.141. Bandara J., Udawatta C. P. K., Rajapakse C. S. K. Highly stable CuO incorporated TiO2 catalystfor photocatalytic hydrogen production from H2O // Photochem. Photobiol. Sci. — 2005. — Vol. 4.— Pp. 857–861. — URL: http://dx.doi.org/10.1039/B507816D.142. Moniz Savio J. A., Tang Junwang. Charge Transfer and Photocatalytic Activity in CuO/TiO2Nanoparticle Heterojunctions Synthesised through a Rapid, One-Pot, Microwave SolvothermalRoute // ChemCatChem. — 2015. — Vol. 7, no.
11. — Pp. 1659–1667. — URL: http://dx.doi.org/10.1002/cctc.201500315.143. CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity / Nillohit Mukherjee, Bibhutibhushan Show, Swarup Kumar Maji et al. // MaterialsLetters. — 2011.
— Vol. 65, no. 21–22. — Pp. 3248 – 3250. — URL: http://www.sciencedirect.com/science/article/pii/S0167577X11007865.144. Zhu Jun, Qian Xuefeng. From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assistedsynthesis, surface photovoltage properties and photocatalytic activity // Journal of Solid StateChemistry. — 2010. — Vol. 183, no.
7. — Pp. 1632 – 1639. — URL: http://www.sciencedirect.com/science/article/pii/S0022459610002045.145. Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge methodin deionized water / AA Ashkarran, MM Ahadian, SA Mahdavi Ardakani et al. // Nanotechnology.— 2008. — Vol. 19, no. 19. — P. 195709.112146. Amano Fumiaki, Ishinaga Eri, Yamakata Akira.
Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation // The Journal of Physical Chemistry C. — 2013. —Vol. 117, no. 44. — Pp. 22584–22590. — URL: http://dx.doi.org/10.1021/jp408446u.147. Kim Jungwon, Lee Chul Wee, Choi Wonyong. Platinized WO3 as an Environmental Photocatalystthat Generates OH Radicals under Visible Light // Environmental Science & Technology. — 2010.— Vol. 44, no.
17. — Pp. 6849–6854. — PMID: 20698551. URL: http://dx.doi.org/10.1021/es101981r.148. Bamwenda Gratian R, Arakawa Hironori. The visible light induced photocatalytic activity of tungsten trioxide powders // Applied Catalysis A: General. — 2001. — Vol. 210, no. 1–2. — Pp. 181– 191. — URL: http://www.sciencedirect.com/science/article/pii/S0926860X00007961.149. Ramāns GM, Gabrusenoks JV, Veispāls AA. Structure of tungstic acids and amorphous and crystalline WO3 thin films // physica status solidi (a). — 1982.