Диссертация (1105604), страница 27
Текст из файла (страница 27)
134, no. 3. — Pp. 219 – 226. — URL: http://www.sciencedirect.com/science/article/pii/S1010603000002549.214. Calvero. Selfmade with ChemDraw. Общественное достояние. — Режим доступа: свободный(25.02.2017). URL: https://commons.wikimedia.org/w/index.php?curid=11334495.215. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VISdiode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry / Claudio Baiocchi, Maria C Brussino, Edmondo Pramauro et al.
// International Journal of Mass Spectrometry. — 2002. — Vol. 214, no. 2. — Pp. 247 – 256. — URL: http://www.sciencedirect.com/science/article/pii/S1387380601005905.216. Vautier Manon, Guillard Chantal, Herrmann Jean-Marie. Photocatalytic Degradation of Dyesin Water: Case Study of Indigo and of Indigo Carmine // Journal of Catalysis. — 2001. —119Vol. 201, no. 1. — Pp. 46 – 59.
— URL: http://www.sciencedirect.com/science/article/pii/S0021951701932324.217. Augugliaro V., Palmisano L., Schiavello M. Photon absorption by aqueous TiO2 dispersion contained in a stirred photoreactor // AIChE Journal. — 1991. — Vol. 37, no. 7. — Pp. 1096–1100.— URL: http://dx.doi.org/10.1002/aic.690370714.218. Puma G. Li. Dimensionless Analysis of Photocatalytic Reactors Using Suspended Solid Photocatalysts // Chemical Engineering Research and Design.
— 2005. — Vol. 83, no. 7. — Pp. 820 –826. — URL: http://www.sciencedirect.com/science/article/pii/S0263876205727696.219. Herrmann J.-M. Heterogeneous photocatalysis: an emerging discipline involving multiphase systems // Catalysis Today. — 1995. — Vol. 24, no. 1. — Pp. 157 – 164. — URL: http://www.sciencedirect.com/science/article/pii/092058619500005Z.220. Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems /Hong Zhao, Suohong Xu, Junbo Zhong, Xinhe Bao // Catalysis Today. — 2004. — Vol. 93–95. — Pp.
857 – 861. — Selections from the presentations of the 3rd Asia-Pacific Congress onCatalysis. URL: http://www.sciencedirect.com/science/article/pii/S0920586104003207.221. Mrowetz Marta, Selli Elena. Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions // Journal of Photochemistry andPhotobiology A: Chemistry. —2006. —Vol. 180, no.
1-2. —Pp. 15 – 22. —URL:http://www.sciencedirect.com/science/article/pii/S1010603005004508.222. Brown Graham T., Darwent James R. Photoreduction of methyl orange sensitized by colloidaltitanium dioxide // J. Chem. Soc., Faraday Trans. 1. — 1984. — Vol. 80. — Pp. 1631–1643. —URL: http://dx.doi.org/10.1039/F19848001631.223. Wang Yongbing, Hong Chia-Swee. TiO2-mediated photomineralization of 2-chlorobiphenyl: therole of {O2} // Water Research.
— 2000. — Vol. 34, no. 10. — Pp. 2791 – 2797. — URL:http://www.sciencedirect.com/science/article/pii/S0043135400000099.224. Mills Andrew, Wang Jishun. Photobleaching of methylene blue sensitised by TiO2: an ambiguous system? // Journal of Photochemistry and Photobiology A: Chemistry. — 1999. — Vol.127, no. 1–3. —Pp. 123 – 134. —URL: http://www.sciencedirect.com/science/article/pii/S1010603099001434.225. Chen Feng, Zhao Jincai, Hidaka Hisao.
Adsorption factor and photocatalytic degradation of dyeconstituent aromatics on the surface of TiO2 in the presence of phosphate anions // Research onChemical Intermediates. — 2003. — Vol. 29, no. 7. — Pp. 733–748. — URL: http://dx.doi.org/10.1163/156856703322601744.226.
Connor P. A., McQuillan A. J. Phosphate Adsorption onto TiO2 from Aqueous Solutions: An inSitu Internal Reflection Infrared Spectroscopic Study // Langmuir. — 1999. — Vol. 15, no. 8. —Pp. 2916–2921. — URL: http://dx.doi.org/10.1021/la980894p.120227. Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and MechanismImplication / Dan Zhao, Chuncheng Chen, Yifeng Wang et al. // The Journal of Physical ChemistryC. — 2008. — Vol. 112, no.
15. — Pp. 5993–6001. — URL: http://dx.doi.org/10.1021/jp712049c.228. Babuponnusami Arjunan, Muthukumar Karuppan. A review on Fenton and improvements to theFenton process for wastewater treatment // Journal of Environmental Chemical Engineering. —2014. — Vol. 2, no. 1. — Pp. 557 – 572.
— URL: http://www.sciencedirect.com/science/article/pii/S2213343713002030.229. Litter Marta I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems //Applied Catalysis B: Environmental. — 1999. — Vol. 23, no. 2.
— Pp. 89–114.230. Recent developments in photocatalytic water treatment technology: A review / Meng Nan Chong,Bo Jin, Christopher W.K. Chow, Chris Saint // Water Research. — 2010. — Vol. 44, no. 10. —Pp. 2997 – 3027. — URL: http://www.sciencedirect.com/science/article/pii/S0043135410001739.231. Jana Amiya K. Nonlinear state estimation and generic model control of a continuous stirred tankreactor // International Journal of Chemical Reactor Engineering. — Vol. 5, no. 1.232. Puma Gianluca Li, Brucato Alberto. Dimensionless analysis of slurry photocatalytic reactors usingtwo-flux and six-flux radiation absorption–scattering models // Catalysis Today.
— 2007. — Vol.122, no. 1–2. — Pp. 78 – 90. — Materials, Applications and Processes in Photocatalysis. URL:http://www.sciencedirect.com/science/article/pii/S092058610700051X.233. Grafting of titanium dioxide microspheres with a temperature-responsive polymer via surfaceinitiated atom transfer radical polymerization without the use of silane coupling agents / Eugene A Smirnov, Maria A Meledina, Alexey V Garshev et al. // Polymer International. — 2013.— Vol.
62, no. 5. — Pp. 836–841. — URL: http://dx.doi.org/10.1002/pi.4377.234. One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers:implications of isoelectric point, hydrolysis rate and fluoride / Ji Man Kim, Yong-Jin Han,Bradley F. Chmelka, Galen D. Stucky // Chem. Commun. — 2000.
— Pp. 2437–2438. — URL:http://dx.doi.org/10.1039/B005608L.235. Bail A. Le, Duroy H., Fourquet J.L. Ab-initio structure determination of LiSbWO6 by X-ray powderdiffraction // Materials Research Bulletin. — 1988. — Vol. 23, no. 3. — Pp. 447 – 452. — URL:http://www.sciencedirect.com/science/article/pii/0025540888900190.236. Petricek Vaclav, Dusek Michal, Palatinus Lukas.
Crystallographic Computing System JANA2006:General features // Zeitschrift für Kristallographie - Crystalline Materials. — 2014. — May. —Vol. 229, no. 5. — P. 345–352. — URL: http://www.degruyter.com/view/j/zkri.2014.229.issue-5/zkri-2014-1737/zkri-2014-1737.xml.237. Pecharsky Vitalij K., Zavalij Peter Y. Fundamentals of Powder Diffraction and Structural Characterisation of Materials. — New York: Springer, 2005.121238.
Finger L. W., Cox D. E., Jephcoat A. P. A correction for powder diffraction peak asymmetry dueto axial divergence // Journal of Applied Crystallography. — 1994. — Dec. — Vol. 27, no. 6. —Pp. 892–900. — URL: http://dx.doi.org/10.1107/S0021889894004218.239. Nečas David, Klapetek Petr. Gwyddion: an open-source software for SPM data analysis // CentralEuropean Journal of Physics. — 2012. — Vol. 10.
— Pp. 181–188.240. Kubelka Paul, Munk Franz. An article on optics of paint layers // Z. Tech. Phys. — 1931. — Vol. 12,no. 593-601.241. Dahm Donald J, Dahm Kevin D. Interpreting diffuse reflectance and transmittance: a theoreticalintroduction to absorption spectroscopy of scattering materials. — Im Publications, 2007.242.
Мельников МЯ, Иванов ВЛ. Экспериментальные методы химической кинетики. Фотохимия:учеб. пособие // М.: Изд-во Моск. ун-та. — 2004.243. Suda Yasuharu., Morimoto Tetsuo. Molecularly adsorbed water on the bare surface of titania (rutile) // Langmuir. — 1987. — Vol. 3, no. 5. — Pp. 786–788. — URL: http://dx.doi.org/10.1021/la00077a037.244. Jones P., Hockey J. A. Infra-red studies of rutile surfaces. Part 2. Hydroxylation, hydration andstructure of rutile surfaces // Trans. Faraday Soc.
— 1971. — Vol. 67. — Pp. 2679–2685. —URL: http://dx.doi.org/10.1039/TF9716702679.245. Griffiths David M., Rochester Colin H. Infrared study of the adsorption of water on to the surfaceof rutile // J. Chem. Soc., Faraday Trans. 1. — 1977. — Vol. 73. — Pp. 1510–1529. — URL:http://dx.doi.org/10.1039/F19777301510.246. Munuera G., Stone F. S. Adsorption of water and organic vapours on hydroxylated rutile // Discuss. Faraday Soc. — 1971. — Vol. 52.
— Pp. 205–214. — URL: http://dx.doi.org/10.1039/DF9715200205.247. Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange onTiO2 / Wenjuan Li, Danzhen Li, Yangming Lin et al. // The Journal of Physical Chemistry C. —2012. — Vol. 116, no. 5. — Pp. 3552–3560. — URL: http://dx.doi.org/10.1021/jp209661d.248. Yates D. J.
C. INFRARED STUDIES OF THE SURFACE HYDROXYL GROUPS ON TITANIUM DIOXIDE, AND OF THE CHEMISORPTION OF CARBON MONOXIDE AND CARBONDIOXIDE // The Journal of Physical Chemistry. — 1961. — Vol. 65, no. 5. — Pp. 746–753. —URL: http://dx.doi.org/10.1021/j100823a011.249. Lewis K. E., Parfitt G. D. Infra-red study of the surface of rutile // Trans. Faraday Soc. — 1966.— Vol. 62. — Pp.
204–214. — URL: http://dx.doi.org/10.1039/TF9666200204.250. Tanaka Katsumi, White J. M. Characterization of species adsorbed on oxidized and reducedanatase // The Journal of Physical Chemistry. — 1982. — Vol. 86, no. 24. — Pp. 4708–4714. —URL: http://dx.doi.org/10.1021/j100221a014.122251. Primet Michel, Pichat Pierre, Mathieu Michel V. Infrared study of the surface of titanium dioxides.I. Hydroxyl groups // The Journal of Physical Chemistry. — 1971.
— Vol. 75, no. 9. — Pp. 1216–1220. — URL: http://dx.doi.org/10.1021/j100679a007.252. Takahashi Keita, Yui Hiroharu. Analysis of Surface OH Groups on TiO2 Single Crystal with Polarization Modulation Infrared External Reflection Spectroscopy // The Journal of Physical Chemistry C. — 2009. — Vol. 113, no. 47. — Pp. 20322–20327. — URL: http://dx.doi.org/10.1021/jp903426s.253.
The amorphous phase in titania and its influence on photocatalytic properties / V.A. Lebedev,D.A. Kozlov, I.V. Kolesnik et al. // Applied Catalysis B: Environmental. — 2016. — Vol. 195. —Pp. 39 – 47. — URL: http://www.sciencedirect.com/science/article/pii/S0926337316303411.254. Фотокаталитические свойства нанокристаллического TiO2 , модифицированного CuO иWO3 / В. А. Лебедев, В. В. Судьин, Д. А. Козлов, А.
В. Гаршев // Российские нанотехнологии. — 2016. — Т. 11, № 1-2. — С. 27–34.123БлагодарностиАвтор выражает благодарность:Шапореву А.С. за обучение практическим аспектам методов исследования полупроводниковых наноматериалов, в том числе основам фотокаталитических экспериментов, Елисееву А.А.и Петухову Д.И. за обучение работе с разнообразным научным оборудованием, а также за помощьв интерпретации получаемых результатов, Шаталовой Т.Б., Евдокимову П. и Ёрову Х. за помощьв проведении термогравиметрии, Шляхтину О.А. за проведение сублимационной сушки большого количества препаратов, Колесник И.В. за проведение ИК-спектроскопии, Васильеву Р.Б.
заплодотворную дискуссию по теме работы, Субботину Д.П. за помощь в освоении языка программирования Python, Акиншину А. за предоставление LATEX шаблона диссертации и автореферата соформлением по ГОСТ Р 7.0.11-2011 под свободной лицензией CC BY 4.0, David Nečas (Yeti) заоперативное внесение дополнений в исходный код программы Gwyddion, Козлову Д.А., Судьину В.В. и Хазовой К.М. за помощь в работе, Гаршеву А.В.
за научное руководство и обучениеработе на различных электронных микроскопах, а также всему коллективу группы электронноймикроскопии и лаборатории неорганического материаловедения.Кроме того, автор выражает глубокую признательность родным и близким за моральнуюподдержку..