Диссертация (1105604), страница 26
Текст из файла (страница 26)
// The Journal of Physical Chemistry C. — 2014. — Vol. 118, no. 20. — Pp. 10805–10813. — URL:http://dx.doi.org/10.1021/jp500954v.181. Treacy M. M. J., Gibson J. M. Variable Coherence Microscopy: a Rich Source of Structural Information from Disordered Materials // Acta Crystallographica Section A.
— 1996. — Mar. —Vol. 52, no. 2. — Pp. 212–220. — URL: https://doi.org/10.1107/S0108767395012876.182. Voyles Paul, Hwang Jinwoo. Fluctuation Electron Microscopy // Characterization of Materials. —John Wiley & Sons, Inc., 2012. — URL: http://dx.doi.org/10.1002/0471266965.com138.183. Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing / Martin J. Hart, Riccardo Bassiri, Konstantin B.
Borisenkoet al. // Journal of Non-Crystalline Solids. — 2016. — Vol. 438. — Pp. 10 – 17. — URL:http://www.sciencedirect.com/science/article/pii/S0022309316300266.184. Gorelik S S, Skakov Yu A, Rastorguev L N. Rentgenograficheskii i elektronno-opticheskii analiz (Xray Diffraction and Electron-Optical Analysis, in russ.). — Moscow: Inst. Stali i Splavov, 1994.185. UV Raman Spectroscopic Study on TiO2. I.
Phase Transformation at the Surface and in the Bulk /Jing Zhang, Meijun Li, Zhaochi Feng et al. // The Journal of Physical Chemistry B. — 2006. —Vol. 110, no. 2. — Pp. 927–935. — PMID: 16471625. URL: http://dx.doi.org/10.1021/jp0552473.116186. Photocatalytic degradation of the alimentary azo dye amaranth: Mineralization of the azo group tonitrogen / M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann // Applied Catalysis B: Environmental.
— 2004. — Vol. 51, no. 3. — Pp. 183 – 194. — URL: http://www.sciencedirect.com/science/article/pii/S0926337304000979.187. Mrgreen71. — Режим доступа: свободный (25.02.2017). URL: https://commons.wikimedia.org/w/index.php?curid=4501865.188. Guettaï N., Amar H. Ait. Photocatalytic oxidation of methyl orange in presence of titanium dioxidein aqueous suspension. Part II: kinetics study // Desalination. — 2005. — Vol. 185, no. 1.
—Pp. 439 – 448. — URL: http://www.sciencedirect.com/science/article/pii/S001191640500648X.189. Konstantinou Ioannis K, Albanis Triantafyllos A. TiO2-assisted photocatalytic degradation of azodyes in aqueous solution: kinetic and mechanistic investigations: A review // Applied Catalysis B:Environmental. — 2004. — Vol. 49, no. 1.
— Pp. 1 – 14. — URL: http://www.sciencedirect.com/science/article/pii/S0926337303005411.190. Gas phase photocatalysis and liquid phase photocatalysis: Interdependence and influence ofsubstrate concentration and photon flow on degradation reaction kinetics / Stephan Brosillon,Ludovic Lhomme, Cédric Vallet et al. // Applied Catalysis B: Environmental. —2008. —Vol. 78, no.
3–4. — Pp. 232 – 241. — URL: http://www.sciencedirect.com/science/article/pii/S0926337307002792.191. Chan Yi-Chin, Chen Jong-Nan, Lu Ming-Chun. Intermediate inhibition in the heterogeneous UVcatalysis using a TiO2 suspension system // Chemosphere. — 2001. — Vol. 45, no. 1. — Pp. 29 –35.
— URL: http://www.sciencedirect.com/science/article/pii/S0045653501000091.192. Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions / V. Augugliaro,L. Palmisano, A. Sclafani et al. // Toxicological & Environmental Chemistry. — 1988. — Vol. 16,no. 2. — Pp. 89–109.
— URL: http://dx.doi.org/10.1080/02772248809357253.193. Abdullah Mohammad., Low Gary K. C., Matthews Ralph W. Effects of common inorganic anionson rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide // TheJournal of Physical Chemistry. — 1990. — Vol. 94, no. 17. — Pp. 6820–6825.
— URL: http://dx.doi.org/10.1021/j100380a051.194. Herrmann J.-M. Catalysis in Multiphase Reactors Heterogeneous photocatalysis: an emerging discipline involving multiphase systems // Catalysis Today. — 1995. — Vol. 24, no. 1. — Pp. 157 –164. — URL: http://www.sciencedirect.com/science/article/pii/092058619500005Z.195. Ultraviolet photodegradation of folic acid / Morten Kristian Off, Arnfinn Engeset Steindal, Alina Carmen Porojnicu et al.
// Journal of Photochemistry and Photobiology B: Biology. — 2005.— Vol. 80, no. 1. — Pp. 47 – 55. — URL: http://www.sciencedirect.com/science/article/pii/S101113440500059X.117196. Практическая химическая кинетика. Химическая кинетика в задачах с решениями: Учебноепособие / Под ред. М. Я. Мельников. — Москва: Изд-во МГУ, 2006.197. Herrmann Jean-Marie. Fundamentals and misconceptions in photocatalysis // Journal of Photochemistry and Photobiology A: Chemistry.
— 2010. — Vol. 216, no. 2–3. — Pp. 85 – 93. — 3rdInternational Conference on Semiconductor Photochemistry, SP-3, April, 2010, Glasgow {UK}.URL: http://www.sciencedirect.com/science/article/pii/S1010603010001796.198. Emeline Alexei V., Ryabchuk Vladimir, Serpone Nick. Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions: Prospect of distinguishing between two kineticmodels // Journal of Photochemistry and Photobiology A: Chemistry.
— 2000. — Vol. 133, no. 1-2.— Pp. 89 – 97. — URL: http://www.sciencedirect.com/science/article/pii/S1010603000002252.199. The “Direct–Indirect” model: An alternative kinetic approach in heterogeneous photocatalysisbased on the degree of interaction of dissolved pollutant species with the semiconductor surface /Damián Monllor-Satoca, Roberto Gómez, Manuel González-Hidalgo, Pedro Salvador // CatalysisToday. — 2007.
— Vol. 129, no. 1–2. — Pp. 247 – 255. — Selected Contributions of the 4thEuropean Meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA 4).URL: http://www.sciencedirect.com/science/article/pii/S0920586107005032.200.
Roles of water and dissolved oxygen in photocatalytic generation of free {OH} radicals in aqueousTiO2 suspensions: An isotope labeling study / A.O. Kondrakov, A.N. Ignatev, V.V. Lunin et al. //Applied Catalysis B: Environmental. — 2016. — Vol. 182. — Pp. 424 – 430. — URL: http://www.sciencedirect.com/science/article/pii/S092633731530165X.201.
A review on the visible light active titanium dioxide photocatalysts for environmental applications /Miguel Pelaez, Nicholas T. Nolan, Suresh C. Pillai et al. // Applied Catalysis B: Environmental. —2012. — Vol. 125. — Pp. 331 – 349. — URL: http://www.sciencedirect.com/science/article/pii/S0926337312002391.202. Saxena Vishal, Sadoqi Mostafa, Shao Jun.
Degradation kinetics of indocyanine green in aqueoussolution // Journal of pharmaceutical sciences. — 2003. — Vol. 92, no. 10. — Pp. 2090–2097.203. Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: Modeling of ReactionRate / L. Rideh, A. Wehrer, D. Ronze, A. Zoulalian // Industrial & Engineering Chemistry Research.— 1997. — Vol. 36, no. 11. — Pp. 4712–4718. — URL: http://dx.doi.org/10.1021/ie970100m.204.
Sakkas Vasilios A, Albanis Triantafyllos A. Photocatalyzed degradation of the biocideschlorothalonil and dichlofluanid over aqueous TiO2 suspensions // Applied Catalysis B: Environmental. — 2003. — Vol. 46, no. 1. — Pp. 175 – 188. — URL: http://www.sciencedirect.com/science/article/pii/S092633730300198X.205. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder / Ken-ichi Okamoto,Yasunori Yamamoto, Hiroki Tanaka et al.
// Bulletin of the Chemical Society of Japan. — 1985.— Vol. 58, no. 7. — Pp. 2015–2022.118206. Chemseddine A., Boehm H.P. A study of the primary step in the photochemical degradation ofacetic acid and chloroacetic acids on a TiO2 photocatalyst // Journal of Molecular Catalysis. —1990. — Vol. 60, no. 3. — Pp. 295 – 311. — URL: http://www.sciencedirect.com/science/article/pii/030451029085253E.207. Mills Andrew, Hill Claire, Robertson Peter K.J.
Overview of the current {ISO} tests for photocatalytic materials // Journal of Photochemistry and Photobiology A: Chemistry. — 2012. — Vol. 237.— Pp. 7 – 23. — URL: http://www.sciencedirect.com/science/article/pii/S1010603012001748.208. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposedto concentrated sunlight / Tianyong Zhang, Toshiyu ki Oyama, Satoshi Horikoshi et al. // SolarEnergy Materials and Solar Cells.
— 2002. — Vol. 73, no. 3. — Pp. 287 – 303. — URL:http://www.sciencedirect.com/science/article/pii/S092702480100215X.209. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles / Ke Dai, Hao Chen, Tianyou Peng et al. // Chemosphere. — 2007.
— Vol. 69, no. 9. —Pp. 1361 – 1367. — URL: http://www.sciencedirect.com/science/article/pii/S0045653507006352.210. Calvero. Selfmade with ChemDraw. Общественное достояние. — Режим доступа: свободный(25.02.2017). URL: https://commons.wikimedia.org/w/index.php?curid=1067922.211. Benjah-bmm27 собственная работа Общественное достояние. — Режим доступа: свободный (25.02.2017). URL: https://commons.wikimedia.org/w/index.php?curid=2130653.212.
Forster M., Girling R. B., Hester R. E. Infrared, Raman and resonance Raman investigations ofmethylviologen and its radical cation // Journal of Raman Spectroscopy. — 1982. — Vol. 12,no. 1. — Pp. 36–48. — URL: http://dx.doi.org/10.1002/jrs.1250120107.213. Martyanov I.N, Savinov E.N. Photocatalytic steady-state methylviologen oxidation in air-saturatedTiO2 aqueous suspension: Initial photonic efficiency and initial oxidation rate as a function ofmethylviologen concentration and light intensity // Journal of Photochemistry and PhotobiologyA: Chemistry. — 2000. — Vol.