Диссертация (1105604), страница 21
Текст из файла (страница 21)
37, no. 1. — Pp. 37 – 48. — URL: http://www.sciencedirect.com/science/article/pii/S0926337301003228.8. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation / Shinya Higashimoto,Naoya Kitao, Norio Yoshida et al. // Journal of Catalysis. — 2009. — Vol. 266, no. 2. — Pp. 279– 285. — URL: http://www.sciencedirect.com/science/article/pii/S0021951709002152.9.
A review and recent developments in photocatalytic water-splitting using for hydrogen production /Meng Ni, Michael K.H. Leung, Dennis Y.C. Leung, K. Sumathy // Renewable and SustainableEnergy Reviews. — 2007. — Vol. 11, no. 3. — Pp. 401 – 425. — URL: http://www.sciencedirect.com/science/article/pii/S1364032105000420.10. Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder / Okamoto Ken-ichi,Yamamoto Yasunori, Tanaka Hiroki et al.
// Bulletin of the Chemical Society of Japan. — 1985.— Vol. 58, no. 7. — Pp. 2015–2022. — URL: http://dx.doi.org/10.1246/bcsj.58.2015.9911. Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder /Okamoto Ken-ichi, Yamamoto Yasunori, Tanaka Hiroki, Itaya Akira // Bulletin of the ChemicalSociety of Japan. — 1985. — Vol. 58, no.
7. — Pp. 2023–2028. — URL: http://dx.doi.org/10.1246/bcsj.58.2023.12. Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide // Progress in SolidState Chemistry. — 2004. — Vol. 32, no. 1–2. — Pp. 33 – 177. — URL: http://www.sciencedirect.com/science/article/pii/S0079678604000123.13. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media / K. Rajeshwar,M.E. Osugi, W. Chanmanee et al.
// Journal of Photochemistry and Photobiology C: Photochemistry Reviews. — 2008. — Vol. 9, no. 4. — Pp. 171 – 192. — URL: http://www.sciencedirect.com/science/article/pii/S138955670800083X.14. Ollis David F., Pelizzetti Ezio, Serpone Nick. Photocatalyzed destruction of water contaminants //Environmental Science & Technology. — 1991. — Vol.
25, no. 9. — Pp. 1522–1529. — URL:http://dx.doi.org/10.1021/es00021a001.15. Puma Gianluca Li, Toepfer Bea, Gora Alexander. Photocatalytic oxidation of multicomponent systems of herbicides: Scale-up of laboratory kinetics rate data to plant scale // Catalysis Today. —2007. — Vol. 124, no. 3–4. — Pp. 124 – 132. — Advanced Catalytic Oxidation Processes. URL:http://www.sciencedirect.com/science/article/pii/S0920586107001940.16. Photocatalytic degradation of bentazon by TiO2 particles / E.
Pelizzetti, V. Maurino, C. Mineroet al. // Chemosphere. — 1989. — Vol. 18, no. 7. — Pp. 1437 – 1445. — URL: http://www.sciencedirect.com/science/article/pii/0045653589900350.17. Konstantinou Ioannis K., Albanis Triantafyllos A. Photocatalytic transformation of pesticides inaqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradationpathways // Applied Catalysis B: Environmental. — 2003. — Vol. 42, no. 4.
— Pp. 319 – 335. —URL: http://www.sciencedirect.com/science/article/pii/S0926337302002667.18. Photocatalytic degradation of lindane, p,p’-DDT and methoxychlor in an aqueous environment /Adriana Zaleska, Jan Hupka, Marek Wiergowski, Marek Biziuk // Journal of Photochemistry andPhotobiology A: Chemistry. — 2000. — Vol. 135, no. 2–3. — Pp. 213 – 220. — URL: http://www.sciencedirect.com/science/article/pii/S1010603000002963.19. Lin Chitsan, Lin Kuen-Song. Photocatalytic oxidation of toxic organohalides with TiO2/UV: Theeffects of humic substances and organic mixtures // Chemosphere. — 2007.
— Vol. 66, no. 10. —Pp. 1872 – 1877. — URL: http://www.sciencedirect.com/science/article/pii/S0045653506011556.20. Muneer Mohammad, Boxall Colin. Photocatalyzed degradation of a pesticide derivative glyphosatein aqueous suspensions of titanium dioxide // International Journal of Photoenergy. — 2008. —Vol. 2008.10021. Photodegradation of surfactants / Hisao Hidaka, Shinya Yamada, Shinichi Suenaga et al. // Journalof Molecular Catalysis. — 1990.
— Vol. 59, no. 3. — Pp. 279 – 290. — URL: http://www.sciencedirect.com/science/article/pii/030451029085101M.22. Vargas Ronald, Núñez Oswaldo. Photocatalytic degradation of oil industry hydrocarbons modelsat laboratory and at pilot-plant scale // Solar Energy. — 2010. — Vol. 84, no. 2. — Pp. 345 – 351.— URL: http://www.sciencedirect.com/science/article/pii/S0038092X09002965.23. Nair M., Luo Zhenghao, Heller A. Rates of photocatalytic oxidation of crude oil on salt water onbuoyant, cenosphere-attached titanium dioxide // Industrial and Engineering Chemistry Research;(United States).
— 1993. — Oct. — Vol. 32:10.24. Tetzlaff Troy A., , Jenks William S. Stability of Cyanuric Acid to Photocatalytic Degradation //Organic Letters. — 1999. — Vol. 1, no. 3. — Pp. 463–466. — URL: http://dx.doi.org/10.1021/ol9906662.25. Yikrazuul. — Режим доступа: свободный (25.02.2017). URL: https://commons.wikimedia.org/w/index.php?curid=3469554.26. Ao C.H., Lee S.C.
Indoor air purification by photocatalyst TiO2 immobilized on an activated carbonfilter installed in an air cleaner // Chemical Engineering Science. — 2005. — Vol. 60, no. 1. —Pp. 103 – 109. — URL: http://www.sciencedirect.com/science/article/pii/S0009250904005020.27. Режим доступа: свободный (12.04.2017). URL: http://www.smiktech.com/.28. Industries Evonik. AEROSIL - Fumed Silica Technical Overview. —свободный(12.04.2017).URL:Режим доступа:http://www.aerosil.com/sites/lists/RE/DocumentsSI/Technical-Overview-AEROSIL-Fumed-Silica-EN.pdf.29. Mills Andrew, Hunte Stephen Le. An overview of semiconductor photocatalysis // Journal of Photochemistry and Photobiology A: Chemistry. — 1997. — Vol. 108, no. 1. — Pp.
1 – 35. — URL:http://www.sciencedirect.com/science/article/pii/S1010603097001184.30. Zhang Hengzhong, Banfield Jillian F. Structural Characteristics and Mechanical and Thermodynamic Properties of Nanocrystalline TiO2 // Chemical Reviews. — 2014. — Vol. 114, no. 19. —Pp. 9613–9644. — PMID: 25026219.
URL: http://dx.doi.org/10.1021/cr500072j.31. Murad Enver. Identification of minor amounts of anatase in kaolins by Raman spectroscopy //American Mineralogist. — 1997. — Vol. 82, no. 1-2. — Pp. 203–206. — URL: http://ammin.geoscienceworld.org/content/82/1-2/203.32. Zhang Hengzhong, F. Banfield Jillian.
Thermodynamic analysis of phase stability of nanocrystalline titania // J. Mater. Chem. — 1998. — Vol. 8. — Pp. 2073–2076. — URL: http://dx.doi.org/10.1039/A802619J.10133. Phase-pure TiO 2 nanoparticles: anatase, brookite and rutile / D Reyes-Coronado, G RodríguezGattorno, M E Espinosa-Pesqueira et al. // Nanotechnology. — 2008. — Vol.
19, no. 14. —P. 145605. — URL: http://stacks.iop.org/0957-4484/19/i=14/a=145605.34. Zhang Hengzhong, Banfield Jillian F. New kinetic model for the nanocrystalline anatase-to-rutiletransformation revealing rate dependence on number of particles // American Mineralogist. — 1999.— Vol. 84, no. 4. — Pp. 528–535. — URL: http://ammin.geoscienceworld.org/content/84/4/528.35. Penn R. Lee, Banfield Jillian F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO 2 // American Mineralogist. — 1998.— Vol. 83, no.
9-10. — Pp. 1077–1082. — URL: http://ammin.geoscienceworld.org/content/83/9-10/1077.36. Zhang Hengzhong, Banfield Jillian F. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2 // The Journal of PhysicalChemistry B. — 2000. — Vol. 104, no. 15. — Pp. 3481–3487. — URL: http://dx.doi.org/10.1021/jp000499j.37. Pankove J. I.
(Jacques I.). Optical processes in semiconductors. — Englewood Cliffs, N.J. :Prentice-Hall, 1971. — Includes bibliographical references.38. Serpone N., Lawless D., Khairutdinov R. Size Effects on the Photophysical Properties of ColloidalAnatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? // The Journal of Physical Chemistry. — 1995. — Vol.
99, no. 45. — Pp. 16646–16654. —URL: http://dx.doi.org/10.1021/j100045a026.39. Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium // Physica Status Solidi B Basic Research. — 1966. — Vol. 15. — Pp. 627–637.40. Tauc J. Optical properties and electronic structure of amorphous Ge and Si // Materials ResearchBulletin. — 1968.
— Vol. 3, no. 1. — Pp. 37 – 46. — URL: http://www.sciencedirect.com/science/article/pii/0025540868900238.41. Daude N., Gout C., Jouanin C. Electronic band structure of titanium dioxide // Phys. Rev. B. —1977. — Mar. — Vol. 15. — Pp. 3229–3235. — URL: http://link.aps.org/doi/10.1103/PhysRevB.15.3229.42. Bastow T. J., Doran G., Whitfield H. J. Electron Diffraction and 47,49Ti and 17O NMR Studies ofNatural and Synthetic Brookite // Chemistry of Materials. — 2000.