rpd000015093 (1009159), страница 3

Файл №1009159 rpd000015093 (161700 (24.03.03).Б3 Динамика полета и управление аэрокосмическими системами) 3 страницаrpd000015093 (1009159) страница 32017-06-17СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Форма организации: Практическое занятие



2.3.1. Непрерывный фильтр Калмана. Синтез управления (АЗ: 2, СРС: 0)

Форма организации: Практическое занятие



2.3.2. Гарантирующая коррекция межпланетной траектории (АЗ: 2, СРС: 0)

Форма организации: Практическое занятие





  1. Лабораторные работы



  1. Типовые задания

Приложение 3
к рабочей программе дисциплины
«
Оптимальное управление ЛА »

Прикрепленные файлы

КР.doc

ФЕДОРОВ А.В.

Сборник заданий

на курсовую работу

по дисциплине «Оптимальное управление ЛА»

Утверждено

На заседании кафедры

«_____»___________20___ г.

Протокол №

2011

1. Вертикальная посадка КА на планету.

КА должен совершить мягкую посадку на планету с использованием только силы тяги двигателя.

Рассматривается движение в вертикальной плоскости при действии только сил тяжести и тяги двигателя.

Сила тяжести направлена по нормали к плоской поверхности планеты.

Силу тяги двигателя, направленную вертикально вверх, можно регулировать по величине изменением секундного расхода топлива.

Математическая модель движения ЛА

,

,

, ,

где h – высота;

m – масса КА;

P – сила тяги двигателя;

J – удельный импульс;

β – секундный расход топлива;

βm – максимально возможный расход топлива;

g – ускорение силы тяжести;

g0 – ускорение силы тяжести на поверхности планеты;

RP – радиус планеты.

В начальный момент времени известны:

– высота

– вертикальная скорость

– масса КА

– запас топлива

Найти программу управления секундным расходом топлива, которая обеспечивает мягкую посадку на Луну при минимальном расходе топлива.

2. Программирование управления спуском с орбиты.

Летательный аппарат совершает посадку на планету (Луна, астероид) с облетной орбиты по траектории в плоскопараллельном гравитационном поле. ЛА оснащен нерегулируемым маршевым двигателем.

В начальный момент времени ЛА находится в перицентре облетной орбиты. известны высота, скорость, масса конструкции и масса топлива на борту.

В момент касания поверхности планеты вертикальная и горизонтальная составляющие скорости должны быть в допустимых пределах.

М одель движения

где h – высота;

m – масса ЛА;

P – сила тяги двигателя;

J – удельный импульс;

β – секундный расход топлива;

βm – максимально возможный расход топлива;

g – ускорение силы тяжести;

g0 – ускорение силы тяжести на поверхности планеты;

RP – радиус планеты.

Критерий оптимальности – расход топлива (максимум конечной массы).

С помощью необходимых условий оптимальности найти программу управления , доставляющую минимум критерию оптимальности при заданных граничных условиях.

3. Параметрическая оптимизация управления спуском с орбиты

Летательный аппарат совершает посадку на планету с эллиптической орбиты в плоскопараллельном гравитационном поле. ЛА оснащен нерегулируемым маршевым двигателем.

В начальный момент времени ЛА находится в перицентре облетной орбиты. известны высота, скорость, масса конструкции и масса топлива на борту.

В момент касания поверхности планеты вертикальная и горизонтальная составляющие скорости должны быть в допустимых пределах.

М одель движения

где h – высота;

m – масса ЛА;

P – сила тяги двигателя;

J – удельный импульс;

β – секундный расход топлива;

βm – максимально возможный расход топлива;

g – ускорение силы тяжести;

g0 – ускорение силы тяжести на поверхности планеты;

RP – радиус планеты.

Программа управления задана в параметрической форме , где , , – неизвестные параметры.

Критерий оптимальности – расход топлива (максимум конечной массы).

Найти решение - параметры , , , при которых затраты топлива минимальны с учетом краевых условий.

Для решения использовать методы нулевого порядка.

Выбрать наиболее эффективный метод

4. Синтез системы стабилизации

Угловое движение ЛА относительно связанной оси Z (тангаж) с достаточной степенью точности можно представить уравнением моментов

,

,

где – угол тангажа;

α – угол атаки;

θ – угол наклона траектории;

δ – угол отклонения руля: ;

– угловая скорость вращения вокруг оси Z;

– момент инерции;

, , – частные производные момента относительно оси Z по соответствующим переменным.

Упрощения: собственное демпфирование мало : .

Угол наклона траектории изменяется очень медленно.

Найти закон управления углом δ, который обеспечит минимальное время регулирования при условиях .

5. Синтез системы стабилизации

Угловое движение ЛА относительно связанной оси Z (тангаж) с достаточной степенью точности можно представить уравнением моментов

,

,

где – угол тангажа;

α – угол атаки;

θ – угол наклона траектории;

δ – угол отклонения руля: ;

– угловая скорость вращения вокруг оси Z;

– момент инерции;

, , – частные производные момента относительно оси Z по соответствующим переменным.

Упрощения: собственное демпфирование мало : . Угол наклона траектории изменяется очень медленно.

Найти закон управления углом δ, который обеспечит минимальное время регулирования при условиях , .

6. Синтез системы стабилизации

Угловое движение ЛА относительно связанной оси Z (тангаж) с достаточной степенью точности можно представить уравнением моментов

,

,

где – угол тангажа;

α – угол атаки;

θ – угол наклона траектории;

δ – угол отклонения руля:

– угловая скорость вращения вокруг оси Z;

– момент инерции;

, , – частные производные момента относительно оси Z по соответствующим переменным.

Упрощения: собственное демпфирование мало : . Угол наклона траектории изменяется очень медленно.

Найти закон управления углом δ, который обеспечит минимум критерия

.

7. Программирование оптимального управления КА.

Необходимо перевести КА из одной точки круговой орбиты с радиусом r0 в другую, считая при этом, что на КА имеется двигательная установка малой тяги, способная создавать управляющее ускорение по нормали к радиус-вектору.

Исходные уравнения движения заданы в полярной системе координат:

где r – радиус-вектор; φ – угловая полярная координата; VR, VT – радиальная и трансверсальная составляющие скорости; μ – гравитационная постоянная Земли: fT – управляющее ускорение.

Полагая, что в процессе перевода отклонения , , , фазовых координат r, VR, VT от соответствующих значений r0, , VR=0, на круговой орбите радиуса достаточно малы, линеаризуйте уравнения и приведите модель движения в отклонениях к виду

,

где , u = fT. Начальное состояние по условию задачи – нулевой вектор.

Терминальное состояние определяется вектором , - заданное угловое расстояние;

Т – длительность процесса перевода подлежит определению.

Оптимальное управление u(t) должно обеспечить выполнение терминальных условий и минимизировать критерий, характеризующий энергетические затраты

.

Терминальные требования аппроксимировать квадратичным штрафом.

Примечание. В уравнениях движения целесообразно перейти к безразмерным переменным с использованием соотношений:

, , , , где .

8. Программирование оптимального управления КА.

Необходимо перевести КА из одной точки круговой орбиты с радиусом r0 в другую, считая при этом, что на КА имеется двигательная установка малой тяги, способная создавать управляющее ускорение по нормали к радиус-вектору.

Исходные уравнения движения заданы в полярной системе координат:

где r – радиус-вектор; φ – угловая полярная координата; VR, VT – радиальная и трансверсальная составляющие скорости; μ – гравитационная постоянная Земли: fT – управляющее ускорение по касательной к орбите; fR – управляющее ускорение по радиусу орбиты;

Полагая, что в процессе перевода отклонения , , , фазовых координат r, VR, VT от соответствующих значений r0, , VR=0, на круговой орбите радиуса достаточно малы, линеаризуйте уравнения и приведите модель движения в отклонениях к виду

,

где , u =( fК, fT).

Начальное состояние по условию задачи – нулевой вектор.

Терминальное состояние определяется вектором , - заданное угловое расстояние;

Т – длительность процесса перевода подлежит определению.

Оптимальное управление - вектор u(t) должно обеспечить выполнение терминальных условий и минимизировать критерий

.

Примечание. В уравнениях движения целесообразно перейти к безразмерным переменным с использованием соотношений:

, , , , где .

9. Синтез оптимального управления КА.

Необходимо перевести КА из одной точки круговой орбиты с радиусом r0 в другую, считая при этом, что на КА имеется двигательная установка малой тяги, способная создавать управляющее ускорение по нормали к радиус-вектору.

Исходные уравнения движения заданы в полярной системе координат:

Характеристики

Список файлов учебной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7034
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее