1625913956-ab00255e9903dcaf7042f91c26c49388 (Гинзбург 2012 - Основы квантовой механики (нерелятивистская теория)), страница 8

PDF-файл 1625913956-ab00255e9903dcaf7042f91c26c49388 (Гинзбург 2012 - Основы квантовой механики (нерелятивистская теория)), страница 8 Квантовая механика (107506): Книга - 5 семестр1625913956-ab00255e9903dcaf7042f91c26c49388 (Гинзбург 2012 - Основы квантовой механики (нерелятивистская теория)) - PDF, страница 8 (107506) - СтудИзб2021-07-10СтудИзба

Описание файла

PDF-файл из архива "Гинзбург 2012 - Основы квантовой механики (нерелятивистская теория)", который расположен в категории "". Всё это находится в предмете "квантовая механика" из 5 семестр, которые можно найти в файловом архиве НГУ. Не смотря на прямую связь этого архива с НГУ, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 8 страницы из PDF

Ни о каком падении на центр или «слипании» зарядов противоположного знака в этом состоянии не может быть и речи.Б. Размер атомной системы не может быть произвольно малым. Его значениепо порядку величины ограничивается соотношением неопределённостей.Соотношения неопределённостей послужили Н. Бору базой для формулированияобщей концепции дополнительности, реализующейся в Природе. Существуютпары дополняющих друг друга понятий (объектов), одновременная полнаяреализация которых в Природе невозможна.Глава 1.

Основные понятия30Мы уже обсуждали невозможность одновременного наблюдения точных значенийкоординаты и импульса в квантовой механике. Здесь дополнительными являютсяпонятия координаты и импульса, связанные соотношением неопределённостей.Концепция дополнительности имеет и существенно более общее значение. Так, не существует ответа на вопрос, каково мгновенное значение частоты Вашего пульса сегодня в 11 часов 12 минут 37,555 секунды. Здесь дополнительными являются понятия частоты пульса и времени, необходимого для его измерения.(Обычно мы имеем дело со средним значением, но и оно зависит от предыстории.)Эту концепцию распространяют также и на явления органической и общественной жизни.

Например, Вы не можете одновременно думать о каком-то содержательном объекте и пытаться постигнуть процесс этого размышления. Здесь дополнительными являются субъект и процесс размышления.§ 1.9.Измерение в квантовой механикеИзмерение – это процесс взаимодействия между квантовым объектом и классическим объектом (прибором), происходящий независимо от наблюдателя (Н. Бор) 1 .Измерительный прибор вносит изменения в наблюдаемую систему. Например,если измерять электрическое поле какого-то распределения зарядов, то само этораспределение меняется под воздействием заряда, используемого для измерений.В классической физике считают, что принципиально возможно так уменьшитьвлияние измерительного прибора, чтобы сделать пренебрежимо малыми изменения,вносимые этим прибором в измеряемую систему (в нашем случае – сделать величинуизмерительного заряда сколь угодно малой).В квантовой механике воздействием измеряющего прибора пренебречь нельзя.

«Согласно квантовому постулату, всякое наблюдение атомных явленийвключает такое взаимодействие последних со средствами наблюдения, которым нельзя пренебречь» (Н. Бор). Например, для измерения положения частицы нельзя обойтись менее, чем одним квантом света, и это существенно меняет величины квантового порядка малости. Подобным образом при измерении положения спогрешностью ∆x электрон меняет свой импульс на величину > ~/2∆x.

Измерениеменяет состояние измеряемой системы, т. е. нельзя провести измерение, не«испортив» измеряемое состояние. Знание начального состояния позволяетвычислить только вероятность результата измерения. Воздействие измерения на состояние объекта тем сильнее, чем выше точность измерения.Важное исключение составляет случай, когда с самого начала квантовая система находится в собственном состоянии |a⟩ оператора измеряемой величины Â,т. е.

Â|a⟩ = a|a⟩. Тогда измерение величины A даст значение a с вероятностью 1.Если оператор величины A со временем не меняется, то её повторное измерениев состоянии |a⟩ оставит систему в том же состоянии и даст опять то же значение.♢ После измерения физической величины A в состоянии |Ψ⟩ система переходитв другое состояние |ψAi ⟩, которое задаётся прибором, но обычно не является даже1 Подобная независимость измерения от наблюдателя не реализуется для некоторых явлений в сложных системах, таких как общество (Дж.

Сорос).1.10. Матрица плотности31собственным вектором оператора Â. Можно предсказать лишь вероятность того,при этом обнаружатся значение Ai и состояние |ψAi ⟩. Повторное измерение той жевеличины даст, вообще говоря, другое значение A j и другой вектор состояния |ψA j ⟩,поскольку полученные состояния не были собственными состояниями оператора Â.Если повторить это измерение с копией нашей системы, получатся скорее всегодругие состояния, с другими значениями Ai и A j .

В соответствии с постулатами∑2квантовой теории, среднее значение величины A есть Ai |⟨Ψ|ψAi ⟩| . При повторномизмерении меняется и это среднее значение.♢ Разумеется, последовательные измерения координаты частицы, выполненныес конечной точностью, покажут близкие значения xi , но не существует имеющегосмысл скорости предела ∆x/∆t при уменьшении интервала времени между двумяизмерениями ∆t → 0.

Вообще в квантовой механике не существует понятиятраектории частицы. Это понятие можно определить только приближённо, наименьшая погрешность в этом понятии задаётся соотношением неопределённостей.«Частица не имеет в действительности ни определённого импульса, ниопределённого положения в пространстве; описание с помощью ψ-функцииявляется в принципе полным описанием.

Точное местоположение частицы,которое я получаю в результате его измерения, не может быть интерпретировано как местоположение частицы до измерения. Точная локализация,которая обнаруживается при измерении, будет проявляться только черезнеизбежное (не несущественное) воздействие измерения. Результат измерения зависит не только от реального положения частицы, но также и отпринципиально неполного знания механизма измерения» (А. Эйнштейн).

Отметим неточность: понятие реальное положение частицы, используемое в концевысказывания, в действительности не определено, как об этом говорилось в началевысказывания.§ 1.10.Матрица плотностиПонятие волновой функции определяется только для изолированной системы,состояние с определённой волновой функцией называют чистым. Если система неизолирована, следует начать с описания полной системы, волновая функция которойψ (x, X) зависит как от координат частиц системы x, так и от переменных, описывающих окружающие частицы (среду) X, соответствующее состояние нашей системыназывают смешанным.Рассмотрим физическую величину G, определённую для нашей системы(т. е.

определяемую оператором Ĝ, зависящим только от переменных нашей системы). Действие этого операторана состояние полной системы можно описать со∫отношением Ĝψ (x, X) = G(x, x ′) ψ (x ′ , X)dx ′ . Здесь G(x, x ′) – просто матричноепредставление оператора Ĝ. Среднее значение физической величины G, усреднённоепо состояниям полной системы, есть∫∏⟨G⟩ = ⟨ ψ ∗ (x, X) Ĝ (q)ψ (x, X) dxdX⟩ ≡(1.32)∫∏≡ ⟨ ψ ∗ (x, X)G(x, x ′)ψ (x ′ , X) dxdx ′ dX⟩.Глава 1.

Основные понятия32(Угловые скобки здесь описывают возможное усреднение по ансамблю состояний«большой» системы, например в термостате.)Интегрирование по переменным X и усреднение по состояниям «большой» системы одинаковы для всех операторов, действующих только на переменные x, чтоприводит нас к понятию матрицы плотности (Л. Д.

Ландау):⟨∫⟩′∗ ′ρ(x , x) =ψ (x, X)ψ (x , X)dX .(1.33)С её помощью среднее значение нашей физической величины G записывается в виде∫⟨G⟩ = G(x, x ′)ρ(x ′ , x)dxdx ′ .(1.34)Описание с помощью волновой функции – частный случай этого описания, в котором ρ(x, x ′) = ψ ∗ (x ′)ψ (x). Заметим, что такое описание может не оказаться полезным, если свойства большой системы меняются очень быстро (например, подвоздействием быстро меняющихся полей).• При изучении задач рассеяния в некоторых случаях оказывается важным, чтосостояния сталкивающихся частиц недостаточно рассматривать как простые плоские волны. Простой пример доставляет нам описание пучка частиц в ускорителе.Обычно говорят, что частицы внутри пучка (т. е.

в известной ограниченной областипространства – области локализации) имеют импульс p. Это значит, что каждую изчастиц следует описывать в виде волнового пакета вида∫∫−i[ω (k)t−k r]fdk ≡ a(k)|k⟩dk|p⟩ = a(k)ekkc весовой функцией a(k), имеющей максимум при k = p и с разбросом импульсов,по порядку величины определяемом соотношением неопределённостей c размерамиобласти локализации. Как правило, более детальные свойства пакета не известны. На первый взгляд, чтобы вычислить какие-нибудь физические величины следует фиксировать (придумать) детальные свойства весовой функции a(k), а затем –чтобы получить натуральный квантовомеханический результат, усреднить ответ поансамблю возможных реализаций волнового пакета.Оказывается полезным изменить порядок действий.

Рассмотрим наблюдаемоезначение физической величины A:∫f Â|fdkdk′ a∗ (k′)a(k)⟨k′ |Â|k⟩ .⟨p|p⟩ ≡k,k′В этом соотношении величина ⟨k′ |Â|k⟩ более или менее легко вычисляется по правилам квантовой механики, а «пакетный вклад» a∗ (k′)a(k) зависит от деталей реализации пакета. Однако физический интерес представляет лишь среднее по ансамблю⟨⟩∫f Â|p⟩)f⟨A⟩ans ≡ (⟨p|=dkdk′ ρ(k′ , k)⟨k′ |Â|k⟩ ,ans(1.35)k,k′ρ(k′ , k) = ⟨a∗ (k′)a(k)⟩ans .1.11.

Задачи33Появившаяся здесь величина ρ(k′ , k) есть матрица плотности пучка, записаннаяв импульсном представлении с практически теми же свойствами, что и обсуждавшаяся выше (1.34). В её описании несущественные детали устройства волновых пакетов исчезают. Использование этой матрицы плотности оказывается очень полезнымв тех задачах, где величина ⟨k′ |Â|k⟩ очень быстро меняется при изменении k и k′ .♢ Если x – пространственные координаты, удобно перейти к их средним значениям xe = (x + x ′) /2 и разностям u = x − x ′ , а затем выполнить преобразованиеФурье по разностям u (N – число частиц нашей системы):∫ ∏N∑1−(ipi ui )ρe(ex , p) =eρ̂(x, x ′)dui ,(ui = xi − xi′) .(1.36)(2π~) 3N/2i=1Получившуюся матрицу плотности в смешанном (x, p) представлении называютфункцией Вигнера. В квазиклассическом случае (см.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее