8 ¦СTо¦ВтАв¦- (Ответы на теория к экзамену)

2013-08-20СтудИзба

Описание файла

Файл "8 ¦СTо¦ВтАв¦-" внутри архива находится в папке "¦С¦¬¦¬¦¦TВTЛ". Документ из архива "Ответы на теория к экзамену", который расположен в категории "". Всё это находится в предмете "теория вероятностей и математическая статистика" из , которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "теория вероятности и математическая статистика" в общих файлах.

Онлайн просмотр документа "8 ¦СTо¦ВтАв¦-"

Текст из документа "8 ¦СTо¦ВтАв¦-"

Билет 8

1Математическое ожидание. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности: М(Х) = х1р1 + х2р2 + … + хпрп . (7.1) Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно. Сойства математического ожидания. Математическое ожидание постоянной равно самой постоянной: М(С) = С. (7.2) Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М(С) = С·1 = С. Постоянный множитель можно выносит за знак математического ожидания: М(СХ) = С М(Х). (7.3) Доказательство. Если случайная величина Х задана рядом распределения

xi

x1

x2

xn

pi

p1

p2

pn



то ряд распределения для СХ имеет вид:

Сxi

Сx1

Сx2

Сxn

pi

p1

p2

pn



Тогда М(СХ) = Сх1р1 + Сх2р2 + … + Схпрп = С( х1р1 + х2р2 + … + хпрп) = СМ(Х). Определение 7.2. Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы. Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероят-ности равны произведениям вероятностей сомножителей. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий: M(XY) = M(X)M(Y). Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

xi

x1

x2

pi

p1

p2



уi

у1

у2

gi

g1

g2

Тогда ряд распределения для XY выглядит так:

ХY

x1y1

x2y1

x1y2

x2y2

p

p1g1

p2g1

p1g2

p2g2

Следовательно, M(XY) = x1y1·p1g1 + x2y1·p2g1 + x1y2·p1g2 + x2y2·p2g2 = y1g1(x1p1 + x2p2) + + y2g2(x1p1 + x2p2) = (y1g1 + y2g2) (x1p1 + x2p2) = M(XM(Y). Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго). 4) Математическое ожидание суммы двух случайных величин ( зависимых или незави-симых ) равно сумме математических ожиданий слагаемых: M (X + Y) = M (X) + M (Y). Доказательство. Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х1 + у1, х1 + у2, х2 + у1, х2 + у2. Обозначим их вероятности соответственно как р11, р12, р21 и р22. Найдем М( Х +Y ) = (x1 + y1)p11 + (x1 + y2)p12 + (x2 + y1)p21 + (x2 + y2)p22 = x1(p11 + +p12) + x2(p21 + p22) + y1(p11 + p21) + y2(p12 + p22). Докажем, что р11 + р22 = р1. Действительно, событие, состоящее в том, что X + Y примет значения х1 + у1 или х1 + у2 и вероятность которого равна р11 + р22, совпадает с событием, заключающемся в том, что Х = х1 (его вероятность – р1). Аналогично дока-зывается, что p21 + p22 = р2, p11 + p21 = g1, p12 + p22 = g2. Значит, M(X + Y) = x1p1 + x2p2 + y1g1 + y2g2 = M (X) + M (Y). Дисперсия.Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y, заданные рядами распределения вида

Х

49

50

51

р

0,1

0,8

0,1



Y

0

100

p

0,5

0,5

Найдем М(Х) = 49·0,1 + 50·0,8 + 51·0,1 = 50, М(Y) = 0·0,5 + 100·0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М(Х) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М(Y). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.Дисперсией (рассеянием) случайной величины называется математи-ческое ожидание квадрата ее отклонения от ее математического ожидания: D(X) = M (XM(X))². Теорема 7.1. D(X) = M(X ²) – M ²(X). Доказательство. Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду: D(X) = M(XM(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(XM(X) + M²(X) = M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X), что и требовалось доказать. Пример. Вычислим дисперсии случайных величин Х и Y, рассмотренных в начале этого раздела. М(Х) = (492·0,1 + 502·0,8 + 512·0,1) – 502 = 2500,2 – 2500 = 0,2. М(Y) = (02·0,5 + 100²·0,5) – 50² = 5000 – 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно. Свойства дисперсии. Дисперсия постоянной величины С равна нулю: D (C) = 0. Доказательство. D(C) = M((CM(C))²) = M((CC)²) = M(0) = 0. Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат: D(CX) = C²D(X). Доказательство. D(CX) = M((CXM(CX))²) = M((CXCM(X))²) = M(C²(XM(X))²) = C²D(X). Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(X + Y) = D(X) + D(Y). Доказательство. D(X + Y) = M(X² + 2XY + Y²) – (M(X) + M(Y))² = M(X²) + 2M(X)M(Y) + M(Y²) – M²(X) – 2M(X)M(Y) – M²(Y) = (M(X²) – M²(X)) + (M(Y²) – M²(Y)) = D(X) + D(Y). Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий. Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий: D(XY) = D(X) + D(Y). (7.11) Доказательство. D(XY) = D(X) + D(-Y) = D(X) + (-1)²D(Y) = D(X) + D(X). Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением. Числовые характеристики непрерывных случайных величин. Распространим определения числовых характеристик случайных величин на непре-рывные случайные величины, для которых плотность распределения служит в некото-ром роде аналогом понятия вероятности. Математическим ожиданием непрерывной случайной величины называется Замечание 1. Общее определение дисперсии сохраняется для непрерывной случайной величины таким же, как и для дискретной (опр. 7.5), а формула для ее вычисления имеет вид: 2 Определение 19.1. Статистической гипотезой называют гипотезу о виде неизвестного распределения генеральной совокупности или о параметрах известных распределений.

Определение 19.2. Нулевой (основной) называют выдвинутую гипотезу Н0. Конкурирую-щей (альтернативной) называют гипотезу Н1, которая противоречит нулевой. Пример. Пусть Н0 заключается в том, что математическое ожидание генеральной совокупности а = 3. Тогда возможные варианты Н1: а) а ≠ 3; б) а > 3; в) а < 3. Определение 19.3. Простой называют гипотезу, содержащую только одно предположение, сложной – гипотезу, состоящую из конечного или бесконечного числа простых гипотез. В результате проверки правильности выдвинутой нулевой гипотезы ( такая проверка называется статистической, так как производится с применением методов математичес-кой статистики) возможны ошибки двух видов: ошибка первого рода, состоящая в том, что будет отвергнута правильная нулевая гипотеза, и ошибка второго рода, заключаю-щаяся в том, что будет принята неверная гипотеза. Замечание. Какая из ошибок является на практике более опасной, зависит от конкретной задачи. Например, если проверяется правильность выбора метода лечения больного, то ошибка первого рода означает отказ от правильной методики, что может замедлить лече-ние, а ошибка второго рода (применение неправильной методики) чревата ухудшением состояния больного и является более опасной. Определение 19.4. Вероятность ошибки первого рода называется уровнем значимости α. Основной прием проверки статистических гипотез заключается в том, что по имеющейся выборке вычисляется значение некоторой случайной величины, имеющей известный закон распределения. Определение 19.5. Статистическим критерием называется случайная величина К с известным законом распределения, служащая для проверки нулевой гипотезы. Определение 19.6. Критической областью называют область значений критерия, при которых нулевую гипотезу отвергают, областью принятия гипотезы – область значений критерия, при которых гипотезу принимают. Итак, процесс проверки гипотезы состоит из следующих этапов: выбирается статистический критерий К; вычисляется его наблюдаемое значение Кнабл по имеющейся выборке; поскольку закон распределения К известен, определяется (по известному уровню значимости α) критическое значение kкр, разделяющее критическую область и область принятия гипотезы (например, если р(К > kкр) = α, то справа от kкр распо-лагается критическая область, а слева – область принятия гипотезы); если вычисленное значение Кнабл попадает в область принятия гипотезы, то нулевая гипотеза принимается, если в критическую область – нулевая гипотеза отвергается. Различают разные виды критических областей: 1)правостороннюю критическую область, определяемую неравенством K > kкр ( kкр > 0); 2)левостороннюю критическую область, определяемую неравенством K < kкр ( kкр < 0); 3) двустороннюю критическую область, определяемую неравенствами K < k1, K > k2 (k2 > k1). Определение 19.7. Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что верна конкурирующая гипотеза. Если обозначить вероятность ошибки второго рода (принятия неправильной нулевой гипотезы) β, то мощность критерия равна 1 – β. Следовательно, чем больше мощность критерия, тем меньше вероятность совершить ошибку второго рода. Поэтому после выбора уровня значимости следует строить критическую область так, чтобы мощность критерия была максимальной.



Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее