Иванов В.А. - Теория оптимальных САУ (955109), страница 2
Текст из файла (страница 2)
ств фуз ио д, 1. Длньа зусн с и Ф)тс ос»ивл, змзь пз! н мзм«м сто«аз«тепрь . с мз р нн« 2 Пуст зь п.о и ств в).,псам всеь зсз зм нс. прсрмв и «р «мь, т з!сзмопз !е дзс зьзз ае т зс~ Л н И, п ма>ТР спь аа т нм н ет л н~ са ал ть мьз крсммк, вч н в кз лм! тиссе с ор т ь)с,у). Толь ар дмзсочнз т» в вдоль кркз а Оуд т фу«кззп з. л, заппннмч за мн «ее позт зз срамзз 3. Ипт 1р л ))у) ~РОО у, В')Лз 0.1) сввп тон фузжпс залом Зде у)з) псп) р «)оф 3',р' сьсзсозз)зус зп функ час, озсрстселз овв ва !«,ь), ° )з р Р )-нсарсрм в н ф)ззсп н нсчз вр умснтоп Узрз м*рн фун зп вал в тназ У).у), к торос назоват Лр"конь«к Рзс р.шсв а а.дачн с«наста останзльвна ьа «натнческн» снесем, рассмотрев« в 2 1.2 «Рвач и с с ь ле ерема тань« уолл«ус мма па«О«ль «» н о «скет«на в«аз«кд фу«кф«с«зсвфв та л а с лрюшю р, л шел Л э.грслун фр кк окопе Прнмеры илач ю редел пеги рснун фу ш палое; 1.
Срезе эсш крввмк, сед н юш х з плошосгв дача мвннмнэааггн фршшгонелв Г(у) ~ ЧГ) б ФФбк. У. 3 юча о брзис о р не — и р д л ь нр ~в)ю, п ютороа тн к лвк гетер гальная то ~кз ереалет нэ ачвльпою юлп шю д(к,уе) в по мс ш В(кг,у) кроне бы*в орслломена Й. берауллн а )оуб г. к с рада вамиую р в р нш юрнапнонного гсгггслс Все функш н у( ) ам а рассматргвать элементы буняпно ольнык пространств Эыг пр стрзчствв гюлвгаютск норлпроое ы ш, т.. намд му е н у у пространстве по влево з сс тв тш е н отрвпвюль. шю чнсао Ау), нзэыввемое лор оО, пр юсм вып лнч св следуюш су ю н )) ]у)РО, прнчем )у) О тоюк пля у О; А) А р) (пДуу, где н — неком рою гю«лш 3) Аут+ у АШ)у Ь.) )у А — срзвенс во треугольника. Расстоан е нсмду элеченшчн е, н рз фу кпвоиаль.
амк пространств опр д еи р.вм ством р(рв ю) Ро~ -юЬ , Ыы буд м рассмвтрнвать сюлуюлнге фупншюнальпыв «рострэастаз; уа 1. Функвнональное нростр тво С, рсдставлвюш е ыгбоб мвчшссюо «епрсрывнык фу ннб, опр дслоннык ка отрезке (л,Ь]. Норма в етом врос ране ве преае. лесею ФОРМ)зоб Ьу(с)1 шек )р(к)). (1.3) Ю э)' йфункднонвльное нрострвнство Сь сошояшее з бюерзрманмк фупккяб вв отрезка (и, ь] м «неюшнк гю ° я няпгпты ю л и ю г т ю ' т епы яоь ы Юы КЕ Р Р УЮ В Р Н РОНЗВЮ УЮ Н РЧВ З ЮЮГЗ югелугаюггы браво к (у()В. ю з (уНН+ ювт )в'«)( ПИ 3 Фунню ю альков проетрв ство С. позоров тогю» нз функннв, аенрерч ва а о ре ю (е, ц и е нны в том шрезке р ровные прот вол ы л поз в в а внлючптел на Н рыа в тюч росгреюгюопрелеляютн формулав Ьу(к)(, ], пэвк )фа()! ()Лб) з-э.
г и Нетруано проверя , что вв д нны но ко я нор» в рззлачны фу нн . юз рпюрз ет а* удюл т оряют всем пеобяою ы уе оны, укз а н ы ы Отреюп (а, Ь] полег быть н нюгренюенвыы, г е. аква а п Ь «о ут рнн ь внаюгпе, рав е бе«оне конти Вэтом плутне в превеленнв ар ы нос и мв еннуыа следует взять точную аерюгюю гр ю т е нзпрннер, лля про. сгр нства С (У(!(= впР (Р(4! Ва дем поняюге гпрерываоетз фу нююн на. Функ. кно ал Г(у) «оз ваегся ке перме ы«е гонке уе, елп Ь„б ° „о ° юб о, ° Ь! Ре))б, Р Ьу — пе(юб буд слпоаебыыо )Г(р) — Г(уй)~е. Ф)ы нанна Г(у) втывоюе юкр Рывком бла а С, есле он непрерывен в калдоб точ. не эюб облвоюг. Пусть д — л» Гное ор прова ноп Р гтранствднв ногороз эвд н ( ун ванная Г(Ь).
Этю фтаннвояал называет н и Р м, елн вм олн ю иедующаа уело. вн»: а) нлн любыя фуккнвВ у~ я рз «з области опр дюа. нл фу пнгго~ ааа Г(уз+ Ю)-Г(рг) + !(рт)) (!.!)) б) дла любого чнспа ы ппрзваинва У фч] -о)(у). (! (Ь)3 м по нсннсплпк ) (р) = ~ ) Рб з г Ф л С(а. Ь) мепр р в ыз функп й на отрезке (п.о]. )0)=у(л) д ш(а.
Ь( нв нетсв г епрермвным н линейным функ»впалом вира. сгр нс е С(л,в). 3 Функш я ) (и) = '] () ( ) у ( г) -)- и ( ) р(з й М, где (( ), й(*) — р рывн е на о р зк (о,Ь] фу «цин, р дота пю собой ле евнин фуенш э в рютрэ . .гве С,(е. ь) неорермвно-дг«ьфере пируем фуакшю ка игр гзе ( Ы. Л.фин юэл )(у)ю ~ Ог~ +(у'(*))тй ЬУЮт НЕПРЕРЫВНИМ ФУ Юи НЮЮП В ПР»тРаи В Се НО юлвнейныы Ию ав астре аютс лпнейные Функшзоналы, шанса. ш е ю неу аргу е нов Т кв функцп н . аэы ютса бнл ги )) анп нрелеленне бн вневнаю функ.
с н у, с»й Фуюи» г(р.э) зыепетсл б и. м. есю ю прейс и лает собой лн ейный Фумюрю пл и ф с р « н г у. Так и образо, дла бн знейно о ша7ЭН фунпшп 7 Е, С =))«77(тэ7э)(к 7(в'-1)(т)р (")Е" букет квалрэшт пшн фт шп вело т п простэээш с С(а, Ь) Э. Фу эннонал )(77) = )(()(к) Е*(л) ф Р(б(В'( )У) Е сэп с)( ) п Р(с)- непр рпвн е нэ отрезке (а Ь! Ьп,к- Ш7Н.
бУПЕт КВЭПРЭтпШЫ т ФУЫШЮНЗЛЕ В 7,Р ттРШНтвп С,(,' Ь( Сп«та лн сбшиэ н»взкршпшм фт эвн "ссшсораэ нспрсрав аэ и отрстш (а,п! Фу кц к ""' сюиту фднкцкоиа т 7(р)-1)()р() (.-б э любое р(к)шс)а,ь! саша шар(а)=у(Ь)= б )(к) б М ггл дояазвтельства Пг т в нею р и тогюе (1»))О. В и У с Р Рм епспг 1Ушпщн /1 ) у е т яусс таща яитсрВЗЛ (ел у ) )с. Ь), СОВЕР Ющиб тО'ГКу »ь а ютором )(»)) О Полог гни т рь Е,— к) ф — »1, есл к Нь Н); уе(4= О, слн»(а(бь Уф Оумнгзия уе(») ук влете Рщт у о. виям щммм, Нс ))(»)Ю(»)й» ~ )(») $»)т(1»)ей» ~ О, ,так «ак Пол зяампм нтсгрзла стю т полажлюл» ав Унрермвлвн Оу кина.
Полу синов прап еорегы воквзм, ваю лемму. Лемма 1,у. Ес»о лоиссимй функционал ь У(у) ~ )) (») Р (») + у (с) у' (кЛ й О д»л любой фу гщон у(к)ю сь вдовлеюорлющсй и пав«ю У(в) У(б) О. го функцк у(к) дггфф Р кцнрус го в у'(к) )(») 'о Юункпна )(к) а у(») полз ею ся нспрермвнмми на '[ , б). "У )Ленма ).Я приводится без коназатсльства Д пазвтельсюо аеммм мощет бить еолучено путе ин егрнро влияя яо ввстян вернон слсгаеного л нспольз нанна лемм« Дю.був-реЯмснла [1). у я Ленма )Л Если кеодрашчнмй Фзикпн иол у(,)-~я)(к)у (П+Р()(р'(к))~й ~О "дщ-югй,'й ф„„к„'„в. Р( ) ю б,щ,юц)ей кусотко.искрю ьРЕЮКУЮ «РОЮВОдМУЮ В УдОЕ»втзОЗКЮЩСй СС.ЮВОЮ У(а) Р(б) О, го Фун нол Р(к) Э б для любого к ю (, 1): „эдссв Е(к) зг Р(к) «еирермвиме (румкцвн о )а,а).
() ) — '), ьи сь — е(*~ю 'т (г — — '), е л т,~с~м+о, О. е .н кф(» — е, «, (-е). )'Рлф«игг фумпми у,(г) и сс пр* олой у и а рнс (у дли к (,—,г,-)-а) пр тллеео у(()~а дгкг(лтм гууй ~ = -г,' р«!у ус (к) —. Тоске р Гостлтомю маггнк о ло тмрснс среднеи !.:. ь ~()()р(()л. — ~ ~ О(л)р(()л (~(Е(мир*. л интеграл ~Р(л)р' (к)дк= ~ Р(к)у' [л)йл ОР(к1, причем уы(к,— о,ко+ е). ))Он лостачочие малик вчв. чениик и Р(к) ( О, е пер й интеграл за счет вилера о модно сделать с ль уг л о мелим, Оксида Слекум,что ~ (О (к) Ре (к) .(- Р (к) уел(к)) лк < О. Полученное противоречие даклтмввет лемму.
Олива нв это св йствв лино)нмл в ивилооэмимк функдггооелов, мм полу и» в дельнеймем яееймминнйу услапия вкстренума иенстормк фуинцнонмгпо. нл ~ Введем п япю дггффсрскю~р еюс ~ Фущпяопалз в лнфф р э.ю фу в~он з фу чю». /ВВ оо ~Ю стоует ю П л 3 я юч ю . «пргрищсю Л фвпчч оь г е,(у,,ь), ч о Оля апшо до у р /ЮЩ Ни Люд фрн ции у «ряиаю еие феючиопя а имеет еяд Ы(уь Л) =/(у, -(. Л)-/(у ) в, (ре Л) -)- а(уь /б) Л Н, «р лм Ип~ о(ум Л) О.
ззч о Ляэейнмй стноскюльна лрнр шсння л фумпшюнэ.ч Ш((Л,Л) пятив*ется О фф рюц«юм Фроси ол лн /(у) нлн ею нервов еприоцисд. Обозначастся первая варна. нее Ш(рв Л) =Ы(л). Фувкпномлл /(у) является днфферснш руеммм п и мю торзй облкств д функцзопэльваго врострзнстез д, ес н ов янфферспнпуу м в кежгюй т чке эт л б спь Вм метим, что 3 функпно львом якзльз лн йнмй фу1 влонви в~(уч,л) воснт название ил ого д фф рен~( или (двфферснннвля Време) о н о аб д фферевцнллз (дибгфсрепнкеле т ) (:. бмй л ффер< гн эа юя рэссмвтрее ем слу эа юредсляетсн еле. дующем обрез м. Зяфинснруем Фупншш у (ы н л (л) я эяюппем Функюю у(л) в ниле у(л) у,(с)+ /Л (т). юю / вещестзсннл» переменная.
уптнз с,зебмм длфферею(иаков фунлмконэля /(у) в таяне уз незмвзстсн пре. доя '. гм а Всем фувкнионал /[у) ммеет в точна у сельмой ивфференнивя, то ои вмеес и слэбмй, лрнчсм зт д ФФ реп. ввел» совпадешм В семен деле, нз сущсствоюнен с и . шма днфференнвилв следует, чтп й/(уьй) /(/Ч+/Лэ) '/(уз) ' й/(У,'.'Уц)+ о(/Лд-/Ы(у, Лд-~ о(дзд, ° Га НЩГ ЫВГЮ тс Н Ю г ш „счг гее (ш — '* -О 1а 1г 1*1 Т гдл о/(г/н 61 = и» вЂ” "" ° " 61(г„(а) ЫГ Г н. 1.1 + 1»,1 то п доютэыввст плюс утвсрзглс»ге Отчсткгс гт если руины анпл 1(у) д ффсреню р]еи (ггш» селеш й ды).
фгрсыгг л) ддп всеп у, врг ллег зшы несо р й ее лести с, тг мн шн рм)=1(у .(-(й) пгг((гре»ыруеып лля всш ми с» й 1, лзн яшар з угфф,шд, пргшем р'(О) щ(1н /д. функипанил 1(у] истинне сн досады д дфсршги ругм л в то не у,щ Й. егли вля л~ое го лспус н ~аш приращения Л щ 6 прпрешспзе фуилшюнща пампа предстанете в ваде д/(уе, Л) а Огг, 6)+ — гьйч, 6)-~-а(г/н 6)66~', где щ (ус, 6) — линейный фуикппанел отгю пгслыюга прнрпиынпн 6; О (уг,й) — квзлрат ый фуин»юнзл». наснтелсн прарзшеш1н Л; приме того, ((ш о(уа 6) О. 1 С КВЗДРСШГЧНЫЛ ф)НШПЮНП Рт(Уг,й) НЕЗЫВас1СВ атаРЫП дпффергн(на .в фуннипонзлз 1(у) в точке у нлн его- Рад ЕаРиач(и*д.
Втауае ВаРВЗШГН О6ОЗНаЧаатСЯ 6'1(Уа й). Лналогично тому, как зто было сделано лля первой вв. Ривпнн, намни воказате, что есле втсрля алрнзпия 6 1(у„й) существует, тс фумкння Ррф /(у -(-(Лт] ныеет вторую пранзааднуш прп 1 О, прочем — Лг!(уг, Л). Фуякпноннл 1(у) будет двдмды дзфгрерснлнруеимм в. аенастя О, если аи двамды днфферснппруем в из»да(, точке втой области. Первая л вторзз верна»» фрее»во- нзив. если онн существуют, онредщяюшя елнвстщнвмм одрвзоы ' аа й 1.Е.
Висту у Фу н за . Нсебюдпмм до а оюме у оаю в р мума Расом рпм п н цмюсгре гун рюзволыгого ф] кц опала, в кмс сформул грте г нс блазнмце н л ста. точямеулон эсрсу а.П шгнезср у афукквона а. в гак не мобзодц г е н поста г г ме услозпя ткстремумз в мноем саппалзшг с впало ппънв по. натгм ° дле функшгй всш ст м шд переменной Роль верной н второй пр зв д мк ФГ кцг т юр ат рз я я вт рвя зарезная фуокц шпзлк Фун нокзл !(у) дослпа г ло ьиог экстре умо «* крпаой у еслп рзз шсть 1(у) — 1(у,) созраняг Н Пекоторои окрс н стн уз Е ля з стремум рассмвтрнввсгся в пространстве ей т. е.
окрестною а рсделветсв нсравенсшон йу — у,йш с, ю зк тремум пвзмваетсо мшь мм; если в про грзнстве Сг, то вн "рему» н м. ваемо слпбмл. Ясла неравенства 1(у,] ~ 1(у) нмеет место для воск ярввмк у( ), прнюлле кашин обллстп О опрепелення функняоналз, то нз крввоГг у,(г) да ветс бю г. «мб мшссвиум. Я»алогично, если соравенлнво нервное. стао !(уз) ~ !1у) дла асез «рнп и у ш О, та на «рпвоб у (з) досгнгвегся об тнмбм н му».