Главная » Просмотр файлов » Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s)

Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (940508), страница 19

Файл №940508 Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (Антидемидович) 19 страницаAnti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (940508) страница 192013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 19)

Приложение кратиыи интегралов к решению задач геометрии и физики 145 Считая, что диаметр шара является отрезком осн Ох и применяя одну из формул (7), п.З.З, найдем » з» с=" Ц/ /?,»„*ь',„7»ь»а —" /.» в»1») /и,= тг» 111 тгз 1 т о е з 2то»г 1 з 1 з /1 3 1 зГ(з) Г(2) 4 г — ащз 0 ٠— гага в ~ 2~ — югз з — щгг Зтгз ( 3 2' 3 Г(2+-') 9 о 120. Доказать, что момент инерции тела Т С йз относительно оси (, проходящей через его центр тяжести О = (О, О, 0) и образующей углы о, ф, у с осями координат, определяется по формуле 1~ =1 соа а+ 1»соз,б+1»соз 7 — 2К»гсозасов,б — 2К»»созпсоз7 — 2К»,соз/) соз7, г з 3 где 1, 1„, 1 — моменты инерции тела относктельно осей г) координат (см. формулы (7), и,З.З) и К„з — — ~~~ луп(х, у, х) Зхау4», г К»» = Ц~ ххн(х, у, х) ЗхЗЗ~Ь, т Кз» ш ~~~ ухи(х, у, х) <ЬЗуих т — центробежные моменты. Х и Найдем квадрат расстояния от точки М = (х, у, *) тела до прямой ! (т.е. до точки Ю вЂ” проекции точки М Рис.

Зз на прямую (, рис. 13). Пусть г ш (х, у, х) — радиус- вектор точки М, а е — орт прямой 1. Очевидно, е = (соха, сох й, сов 7), 4~ = )г(~ — (г, е), где (г, е) — скалярное произведение векторов г и е. Приикмая во внимание равенства )г)* ш х + у +», (г, е) ш х сох о+ усох,б+ хсоз7, созз а+ соз~ д+ соз~ 7 = ), имеем а (х + у + х )(Ом ю + соз П + соз 7) (х соз и + у соз ф + х с(м 7) = (у +х ) соз а+(х +х ) соз /»+(х +у ) созе 7-2ху сов асозй — 2ххсозосоз7 — 2ухсозл сох 7. Пусть п(х, у, х) — плотность вещества тела Т. Из определения момента инерции тела относительно некоторой осн (см.

формулу (6), п.3.3) следует равенство 1~ = 4 п(х, у, х)йх494». т Подставив в интеграл найденное выше значение а~ и пользуясь свойспюм аддитивности тройного интеграла, получим доказываемую формулу. 3» 121. Найти момент инерции относительно начала координат однородного тела Т плотности Пе, ограниченного поверхностью, ззданноя уравнением (х + у + х ) = а (х + у ). ч Применяя формулу (3), п.З.З, получим 14б Гл, 2. 1»ратные и криволинейные интегралы Перейдем и интеграле к сферическим координатам по формулам (7), п.1Я. Очевидно, О «( В < т. 0 < р < 2т, О ( р ( а мв В. После замены тройного интеграла повторнылг найдем а 2 2 «И В 2 о Г . о 2 , Ру 11 уо т Ври ~о)вВВВ / 412 3( р Ыр= -кроа 3( мп ВЫВ ы -т доз В (-, -~ = — роа .

)ь 5 )' б '12' 2) б о о о о 122. Найти ньютонов потенциал з точке Р = (г, у, 2) сферического слоя Т = ((с, О, л) б Нз 1 т, < ~ + лз + сг ( тз)1 если плотность д ио г'(т), где у — известная функция, т оо /~2 + 02 + лт2 М Повернем систелгу координат так, чтобы ось ОС) системы координат ОС)г))Л) проходила через точку Р. В новых координатах сферический слой является мноя'есгволг точек, определяемым неравенствами т) (» С) + О) + Л) ( то. по которому будем интегрировать, применяя 2 2 2 2 2 формулу (10), п.3.3.

Писем г(иг)+., +1)) ) ' )=.'")= Ш а а '-)6-*) 24124, 24со(,1 Перейдем к сферическим координатам по форлгулалг (2), п.1.8. Легко убедиться в тол), что О ( В ( т. О»( ло » <2т, г) » (р ( тз. Принимая это во внимание и переходя к повторному интегралу, получим 2.г à — ~У(~) (р+ — ~ р — ~) "р = ° / 1 Стл тт Р 2 Ответ мололо записать в более компактной форме. Если р > т. то — > р; если р ( г, то в2 — ' < р.

Поэтому 2 и(т, у, 2) = 42 ~ пцп —. р у(р) Вр. В 1 Упрагкнения для самостоягельяой работы Найти площади плоских фигур, ограниченных кривыми. заданнымн уравнениями) 50. (х + у — ах) = а (хг + у ), х + уз = аь)зу (внутри ка:кдой лз кривых), 51. (хо+ уз) = азха+ бзуз. 52.

х'+у та 2азху. 53. У— , + ДГ ио *— , + Ду. о Л) Ы Ы' 54. (-*+-"„) =-* — д,у>О, 55. (д+д) = — „*,,у>0,а>0.6>0. 2 2« ми ВВВ ), . *) = 1гг).)2+./ — 1 11 1 1 в=. = 2)г р~У'(р) -l' а)2 рт 1 в=о 4яу р)(р) Вр, если р > т, 11 — ) р у(р)ар, если р ( т, 1 63. Прпловкеиие кратиыл интегралов к решению задач геометрии и фмяики !41 88. хг = ау, хг = Ьу, у = та, у = и (О < а < Ь, 0 < ос < а). 89.

у =а — 2ах.у =Ь вЂ” 26х,у =юг+2шх,у —.-и +2пг (О<го<и.Осе< 6) 60 (хг+уз)г а(хз Охуг) а > О 61 (ха+уз)г хг+ уз 2, ) 0 у > О 62. (д+ ) «а.*+. 63. х+у=а,з+у=Ь,уг«о«.у«с гг (О<а<6,0<о . 56 64. 1у=+,Д = 1, /~+ Я = 2, -* = я 4'- = д (а > О, Ь > О), С полющью двойных интегралов иайти объемы тел. ограниченных поверхностями, задан- ными уравнениями. Об. я+у+2=а,ха+у =62,2=0.

(а>ЬЧ2). 66. хггг+а у =с х2,0<т<а. 67. у + гг = х, х = у (х > О). 68. г = ип(х + уг), г ш О, ах < х + у < (и + 1)х. 69. х +у =о«2,х +у =ах(г>0). 70. 2(х+у)=ах+Ьу,г=0.1<х +у <4,(х>О.у>О,а>0,6>0). 71. (~~-+ ЯВХ) + 3 = 1, г > О. 72. «2 = 2ху.

(~~+ дат~ = --Р (х > О. у > О. г > О). 73. г = хл/х + у /у, х + у = 1 (х > О, у > О, г > 0). ( + 6) + сг 1 1„+ ~6) (у>0 г)0) уз=аз — 2ах уз=глг+2лсх,у=О г=О. Нюши площади: 76. Части поверхности 5 = ((х, у. г) е Из: а» = ху). заключенной внутри цилиндра 52 = ((х, у, г) е Р; хг+ у = а . г 6 Р). 77. Части поверхности 5 = ((х, у.

2) е Из: хг + уг + гг = а ), расиолощеиной вне цилиидров 52 =((х, у. 2)ЕИ:х +у =ах.гйИ). 52=((х,у, г)ЕИ сх +у =-ах. гб И), а>О. 78. Часты поверхности 5 = ((х, у. 2) е Рз: хг+уз = 2аг). заключенной внутри цилиндра 52 = ((х. у, «) Е И: (хг + у ) «а 2а ху, г е И). 79. Части цилиндра 5((х, у, г) 6 Из: хг+ уг ш а, г Е Р). вырезанной плоскостями, заданными уравнениями х+ г = О. х — х = О (х ) О, у ) О). з 80. Части поверхности 5 = (х, у, г) еИ~ '.

(хг+ у )2 + г =1 . отсекаел2ой плоскостью хОу. 81. Части поверхности 5 = ((х. у, г) 6 Из: (-, + Ц + —" = 1), вырезанной плоскостяьиг, заданными уравнениями х = О, у = О. 2 = О. 3 82. Части поверхиости 5 = ((х, у, ) Е И: — — дь- = 22~, вырезаииой поверхностью а ((х'у г)еИ '«+ ьг 1 г 0) 3 «2 «2 83.

Части поверхности 5 = ((х, у, г) Е И: —, + —, = 22 '(, заключенной внутри цплии- «Л 2 -" =( " " (- ") ----'"") С помощью тройных интегралов найти объемы тел, ограниченных поверхностями. заданиыми уравиеииями: 84 (х2+уз +г2)з з(ха+уз+ 3) )0 ) 0 ) О 88 (х2+~2)24 га аз(х у) 2 2 *Л С лз / 2 2 2 26 ;г 66.

(8+" +«) =8+3 — —,х>О,у>О,х>0. а 6 с) В Л' 89. (а2х+62у+ с2«) +(агх+ Ьгу+ сгг) = 1, азх+Ьзу+ сзг = ю16, где ос 62 с2 аг Ьг сг ф0. аз Ьз аз 148 Гл. '2. Кратные и криволинейные интегралы (хз + уг + хг)з 91. х + уг + хг = а, хг + у + хг = Ь, х + уз = зг (х > О, 0 < а < Ь). l г з гьг гг г г г 96.

( — +р) +(-) =1,х>О,у>О.х>0, 97.,«иэог+ Я+ Льугт = 1, х > О, у > О, х ~ )О. 98. (х + у + з ) Найти координаты центров тяжести однородных пластинок Р С Р, ограниченных крпг выпи, заданными уравненияьт: 99. х' + у' = хгу. 100. (-+ д) = щь, 101.;/х +,гу =;/ащ х = О, у = О. 102. (-+ 8) = —,".

1.03. (хо + у ) = 2а ху, х > О, у > О. Найти моменты инерции 1 и 1„относительно осей координат Ох и Оу однородных пластинок Р С В~. ограниченных кривымн. заданиымн уравнениями; 104. —,* + д = 1, — + д = 1, у = О (Ьг > О. Ьг > О, Ь > О). 108. р = а(1+ сов ьг).

106. х' + у' = а (хг + уг). 107. ху = аг.. ху = 2а, х = 2у. 2х = у (х > О, у > О). 108, Найти лзолгент инерции правильного треугольника со стороной а относительно пря- мой, проходящей через центр тяжести треугольника и составляющей угол о с его высотой. Найти координаты центров тяжести однородных тел. ограниченных поверхностялги, за- данными уравненняьщ: 109. Лг(хг + у ) = а з", 0 < г < Ь. 110. ха + у + зг = а, хг + уг = ах. 111. -т + У- = -'.

- + Д = ~1, - — К = Ы, - = О. 112 хг+хг аг уг+ „г аг (з>О) 113 ха+уз 2з х+у Определить моменты инерции относительно координатных плоскостей однородных тол, ограниченных поверхностями. заданныып уравнениями (параметры положительны); г * г г г г 114.

г + ьь =,г: ' = ' 118. —: + ы +,г = 1 «г + ьг 116. — + — = 2-;. — „+ — = —,. «* з г ьг ' ь 117. Найти ньютонов потенциал в точке Р = (О. О, з) цилиндра Т = ((б, Л, ь) Е Вг: с~+ пг «( га~. О ( л «( Ь) постоянной плотности рь. 118. Найти силу притяжения однородным шаровылг секторолг плотности рс материальной точки с массой, равной единице, помещенной в его вершине, если радиус шаровой поверхно- сти равен г, а угол осевого сечения сектора равен 2о. ~ 4.

Интегрирование на многообразиях 4.1. Многообраззгя в евкпидовом пространстве йю и нх ориентация. Определение 1. Лбножсслгво 31 С гл~ наэыеастсямногообразисм роз.иерности р «( и . пранаб.гежащгьн классу С', если для каждой точки а = (аг,..., а ), а Е ЛХ, и некоторой окреспгности 5(а, б) существует окрестносгпь 5(ар, бг) точки ар —— (ап ..., ар) и тако« отображение Ьг: 5(ар, бг) — Л1 гг 5(а, б) класса С'. что ьгэ(ар) = аэ. у = р+ 1. т, причем координаты гпочек х Е Л1 гг 5(а, б) удовлетворяют уравнениям хэ — — Ьгэ(хр) = Ьгэ(хэ, ..., хр), хр Е 5(ар, бг), 1 = р+ 1, т. (1) Определение 2. Параметрическим представление н множества Л1 С Ию размерности р «(т, принадлежащим классу С, называется отображение и ь йл(и) открытогс множества С С мо в пРостРанство И™г обладающее следУющими свойспгвоми: 1) й яеллемся со.ггсозгорфиззгозг О на И; 2) йь «ьлягнн я отобз «л«нисм лг — гл«', принодяьмощнлг классу Сг; $4.

Характеристики

Тип файла
DJVU-файл
Размер
2,6 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее