1626435900-2be340c6a244b99156a9dca9d508df44 (844337), страница 56
Текст из файла (страница 56)
Ситуаиия здесь полностью аналогична той, которая имеет место в случае аффекта Пашена-Бака. Уровень уз' расщепляется на ряд компонент, каждая из которых характеризуется определенными значениями квантовых чисел М Мг бЕм м = )г,~Е НМ~+ АМуМг (29. 40) где А — константа сверхтонкого расщепления. Поскольку радиационные переходы удовлетворяют правилу отбора ЛМ,=О, из (29.40) следует, что каждая из зеемановских компонент в свою очередь расщеплена на (2/ + 1) составляющих. Таким образом, в тех случаях, когда зто расщепление разрешается аппаратурой, можно определить спин ядра Е Например, ряд зеемановских компонент линии 2,= 4722 Л В11 в свою очередь расщепляется на 1О компонент.
Это дает для ядра В1мм значение / =9)2. ГЛАВА !Х ВЗАИМОДЕЙСТВИЕ АТОМА С ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ ф 30. Излучение электромагнитных волн И = гог А, Е =1 — гог гог А. , с ге 130.1) При определении вектора А мы будем исходить из известного выражения для запаздывающего потенциала г (г- — ) 1 н . е с А 1Л, 1)= — ~,у(г) , дг. 130.2) Здесь посредством Л, г и г' обозначены радиус вектор точки наблюдения, ралиус-вектор объема Ио, по которому ведется интегрирование, и расстояние от этого объема до точки наблюдения, Как следует из 130.2), при интегрировании значения / берутся г в момент времени г — —, Тем самым учитывается запаздывание аванс ' модействия. Выберем начало координат где-нибудь внутри системы зарядов н рассмотрим поле излучения в так называемой волновой зоне, т. е.
на расстояниях, больших как по сравнению с размерами системы зарядов, так и по сравнению с длиной световой волны )с. При этом имеет место соотношение г'=Й вЂ” пг, пг((А'. 130. 3) 1. Поле излучения в волновой зоне. Произвольное электромагнитное поле всегда может быть разложено на монохроматнческне волны, поэтому далыпе мы будем рассматривать только монохроматическое поле частоты г». В этом случае все величины, описывающие поле, — напряженности Е, И, потенциалы А, гр, а также плотности зарядов и токов, создающих поле, 0 и у зависят от времени посредством множителя е-' '.
В свободном от зарядов пространстве напряженности поля Е и И однозначно определяются заданием векторного потенциала поля А 343 8 30) излучение злектгомлгнитных Волн В первом приближении в знаменателе выражения (30.2) можно заме. г — лл нить г' на Н; в числителе же в общем случае множитель е нельзя заменить единицей. Для этого необходимо, чтобы — пг((1, с что может и не иметь места. Поэтому (30. 4] -гл [г- — ) М с А = ),уеы"е(Р.
сй (30. 5) В волновой зоне вычисление напряженностей поля Е и Н значительно упрощается, так как можно с достаточно хорошей точностью считать, что в ограниченных участках пространства поле имеет вид плоской волны е'ы'- ", Й = Й и, Й = — . с ' В этом случае из соотношений (30.1) ле~ко получить Н=([йА1, Е= — ~ [й[йАЦ. (30.6) Найдем энергию Н, излучаемую системой зарядов в элемент телесного угла г(О=З(п8г(бг(гр. Эта величина равняется количеству энергии, протекающему в 1 сек через элемент шаровой поверхности Н'с(О, или, другими словами, средней плотности потока энергии О", умноженной на й'дО. Выражение для потока энергии (вектора Пойнтинга) Я =Яп в волновой зоне в соответствии с (30.6) имеет вил л =4 (кеН) и= — — „„(КЕА(.) и. (30.7) г(! =Я)х'ИО = — ее ~ уегеЫг ~ НО.
8Н с' (30.8) Поскольку плоская волна произвольной поляризации может быть представлена в виде суперпозиции двух плоскополяризованных волн, полную интенсивность можно получить, просуммировав (30.8) по лвум взаимно-перпендикулярным направлениям полярнзациц пгв: 0=1,2, Здесь КЕА) — действительная часть поперечной составляющей векторного потенциала, т.
е. проекции А на плоскость, перпендикулярную й. Обозначив посредством ев единичный вектор поляриззции волны, получим для интенсивности излучения, поляризованного по ел, следующее выражение: 344 взличодействие АТОМА с элгктРОМАгннтныч полем !гл 2. Излучение электрического днполя.
Предположим теперь, что условие (30 4) выполняется. Для этого необходимо, чтобы длина волны с Х = 2ж — была много больше размеров системы. Положив е'"' = 1 ы преобразуем ингеграл, входящий в (30,8), используя уравнение не. прерывности б|ч г+ — =О, де дг которое в нашем случае принимает вид Й!ч,/ = ЙОО. Умножим это соотношение на х и проинтегрируем по произвольному объему х б!ч~ = б!ч (ху) —./втаб х = б~ч (ху) — у„. Интеграл от б1ч(ху) может быть преобразован в интеграл по поверхности. Поскольку плотность тока .у за пределами системы обращается в нуль, этот интеграл равен нулю. Танич образом, — ~У„Е(О=!ю~ Охи . Аналогичные соотношения легко получить н для у у',.
Поэтому удг= — !тл ) и гг!г= — !Оз0, (30.9) где 0 — дипольный моиент системы') дУ= —,"' ~ ~~га0~*дО. (30.10) г — ь ° Направим ось г по вектору 0. Векторы поляризации в,», н,а можно выбрать таким образом, чтобы вш.0=0соз(ега0) =05!пб, е,а0 0 нг = — 0 5(п 8 нй и!р. (30.
11) ы4 ! = —,0'. ~1 (30. 12) ') В том случае, когда поле создается точечным зарядом, осииллнруюшнмс частотой ы, ~ удгк яв, ~ Огдг=ег, и соотношение (309) приобретает особенно наглядный смысл в — Гыг. Проинтегрировав (30 11) по и!р от 0 до 2л и по 8 от 0 до и, получаеи полную интенсивность излучения 6 зо) излучение электромагнитных Волн 345 мр арр = 8лс [е,Р~*до= 8,. -.*6.
(о. (золз) Среднее значение соя з,п по ориентациям вектора Р равно †, по1 3 этому м41РЙ 3.8лс' (30. 14) „4рзр (30. 15) 7р 2 ' зс' Важной особенностью (30.14), (30.15) является нзотропность излучения и незавнсимость от выбора направления поляризацни. Это позволяет записать (30.14) в виде !! — !Р 4 (30.16) Умножая (30.15) на 2, что соответствует двум независимым направлениям поляризации, получаем для полной интенсивности излучения прежний результат †форму (30.12).
Таким образом, излучение днполя, усрелненное по его ориентации в пространстве, а также излучение совокупностн свободно ориентирующихся диполей неполяризовано н изотропно. ю р — ьр Продолжая разложение чножителя е ' в ряд по степеням — ие, можно получить в дополнение к (30.12) излучение, опредес ляемое магнитным моменгом системы рп = — ~ [РЯ с(Р 1 Р 2с3 (30 17) (магнитное дипольное излучение) и электрическим квалрупольным моментом г,р,1= ') р(зг. Рр — Ь,рг') с(Р (30.18) (электрическое квадрупольное излучение), Дальнейшее разложение по степеням — ие лает излучение высших электрических и магнитс иых чультипольных моментов.
Этот вопрос рассмьтриааегся в гг 32. 14айдем также полную интенсивность излучения, поляризованного по направлению ерь, усрелненную по всем возможным ориентациям вектора Р в пространстве 3. Квантование поля излучения '). Произвольное поле излучении в свободном от электрических зарядов объеме )Р можно представить в виде разложения по плоским волнам е'Р»"-"П А (г, 1) = ~яр ~(а» е'»'; а»е-'»') а» и-' ' (30,19) Величины а» однозначно определяют поле в любой точке рассматриваемого объема Ь'.
Поэтому описание поля заданием дискретного набора переменных а» вполне эквивалентно описанию поля посредством непрерывных функций координат А(г, 1) или Е(г,1), Н(г,)). Выразим через величины а» энергию поля еР = — (Е + тт ') Рте = 2 ) Е' Рте. (30.20) 1)ля каждой из плоских волн, участвующих в разложении (30.19), вектор-потенциал а»е'»'+ а„е -'»' связан с напряженностью поля Е соотношением (30.6), поэтому Е = ~~~ ~Е», Е» = 1й (а»е2»2 а»е -2»г) » (30.21) Подставляя (30.21) в (30.20) и учитывая условия ортогоиальности г'»Ре -1»'2 Рте = )Рб»», и получаем )2»2 8= ~~: кг», кг»=,— а»а».
йп (30.22) Таким образом, энергия поля представляется в виде суммы энергий плоских волн, учзствующих в разложении. Плоская волна произвольной поляризации в свою очередь может быть представлена в виде суперпозиции двчх плоскополяризованных волн. Поэтому векторы а» имеют две независимые компоненты а» = ~ ее»аз». 2=1, 2 (30.23) ') В этом разделе предполагается, что потенциалы электромагнитного поля выбираются тви, что Рр=О, б!ч А=О. Это является частным случаем 1 калибровки 31ч А+ — чР= О, которой соответствует формула (30.2) для А.
с Условие б1ч А=О обеспечивает поперечность А, Подобный выбор А удобен по той причине, что продольная составляющая А не имеет отношения к полнР излучения. 346 взлнмодействие »томь с электеомлгнитРРым полем (гл. Рх й 30) ИЗЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН 347 Единичные векторы е,» и е,» вззимно-перпендикулярны. В соответствии с (30.23) ъ 8»= л 8р», (30. 24) (р »в к'р» = — ар» а,'» 2п Перейдем от переменных а,» к новым переменным у ( у и «Ер»= ~' 4„,*(ар»+ "р») Рр» — 'тв» ~У 4„,»(а㻠— ар»). (30.25) Введение «канонически сопряженных» переменных г;р и Р удобно тем, что выраженная в этих переменных функция Гамильтонз, совпадающая с полной энергией, имеет тот же вид, что и функция Гамильтона линейного гармонического осциллятора ! в р ~р» = 2 (~ р»+ ЕР»"гр») Ррв = («р». (30.26) Таким образом, функция Гамильтона распадается на сумму независимых членов Ир», каждый из которых соответствует волне с определенным волновым вектором й и поляризацией е,».