1611689230-c82f95de5ae5b8e93bc9da7770e8f930 (826746), страница 14
Текст из файла (страница 14)
Ø. - Ë. ñóùåñòâîâàíèå ñîáñòâåííûõ çíà÷åíèé ìîæíîäîêàçàòü è ñâîèì ïóòåì.0Òåîðåìà 4 (Óòî÷íåííàÿ òåîðåìà ñðàâíåíèÿ).0Ïóñòü äàíû äâà ðåøåíèÿ óðàâíåíèÿ âèäà (1 ) íà00y + Q(x)y = 0,[a, b]:00z + q(x)z = 0Çàäà÷à Øòóðìà - Ëèóâèëëÿè0è ïóñòüQ(x) > q(x)íà[a, b].Òîãäà ðåøåíèå çàäà÷è Êîøèíóëåé, ÷åìz(x),k -îãîíóëÿèìååò íày (x)[a, b] íå ìåíüøåz(x), y (x) ïåðåíóìåðîâàíûk -ûé íóëü y (x) ðàñïîëîæåíïðè÷åì åñëè íóëèïî ìåðå ïðîäâèæåíèÿ îòëåâåå0y (a) = z (a) = − cos α.y (a) = z(a) = sin α,aêb,òîz(x).Äîêàçàòåëüñòâî ñëåäóåò èç äîêàçàòåëüñòâà Òåîðåìû 4.Èíûìè ñëîâàìè, åñëè ìû óâåëè÷èì êîýôôèöèåíòQ(x)0â (1 ),òî âñå íóëè ðåøåíèÿ ñäâèíóòñÿ âëåâî.Òåîðåìà 5 (Òåîðåìà îá îñöèëëÿöèè).Ó Ç.
Ø. - Ë. ñóùåñòâóåò ñ÷åòíîå ÷èñëî ñîáñòâåííûõ çíà÷åíèéλ0 < λ1 < ... < λn < ... ( lim λn = ∞),n→∞ïðè÷åì ñîáñòâåííûå ôóíêöèèêîðíåé íàyn (x) = y (x, λn )èìåþò ðîâíî[a, b].Òåîðåìà äîêàçûâàåòñÿ ïî àíàëîãèè ñ òåîðåìîé ñðàâíåíèÿ.Çàäà÷à Øòóðìà - ËèóâèëëÿnÁóäåì ðàññìàòðèâàòü Ç.
Ø. - Ë. â èíîì âèäå:0 0 p(x)y + λ − q(x) = 0,0y (a) cos α + y (a) sin α = 0, y (b) cos β + y 0 (b) sin β = 0,p(x) > 0íàx ∈ (a, b);[a, b]; p, q - íåïðåðûâíû íà [a, b].λ = 0 íå ÿâëÿåòñÿ ñîáñòâåííûìÁóäåì ñ÷èòàòü, ÷òî0çíà÷åíèåì(11 ).Îïðåäåëåíèå.Ôóíêöèåé Ãðèíà êðàåâîé Ç. Ø. - Ë. (1100(10 ))áóäåì íàçûâàòüôóíêöèþg (x, s), óäîâëåòâîðÿþùóþ óñëîâèÿì:g (x, s) íåïðåðûâíà íà a ≤ x , s ≤ b ,02) [p · gx ]x − q(x)g (x, s) = 0 ∀x 6= s ,03) g (a, s) cos α + gx (a, s) sin α = 0,0g (b, x) cos β + gx (b, s) sin β = 0,0014) ïðè x = s gx (s + 0, s) − gx (s − 0, s) = p(s) .1)Çàäà÷à Øòóðìà - ËèóâèëëÿÄîêàæåì ñóùåñòâîâàíèå è åäèíñòâåííîñòü ôóíêöèè Ãðèíà.Ðàññìîòðèì çàäà÷ó Êîøè0 0(py ) − qy = 0,0y (a) = sin α, y (a) = − cos αè íàéäåì åå ðåøåíèåy1 (x).Òîãäà âñå ðåøåíèÿ, óäîâëåòâîðÿþùèå êðàåâûì óñëîâèÿì0y (a) cos α + y (a) sin α = 0,0y1 (a) cos α + y1 (a) sin α = 0áóäóò âûðàæàòüñÿ â âèäåÀíàëîãè÷íî äëÿÏðè÷åìy1,2C1 y1 (x).y2 (x).áóäóò ëèíåéíî íåçàâèñèìû.Îïðåäåëèì òåïåðü ôóíêöèþ Ãðèíà òàê:g (x, s) =ãäåα̂, β̂α̂y1 (x)y2 (s),β̂y1 (s)y2 (x),x < s;x > s,- ïîêà ïðîèçâîëüíûå ïîñòîÿííûå.Çàäà÷à Øòóðìà - ËèóâèëëÿÈìååì00α̂{y2 (s)y1 (s) − y2 (s)y1 (s)} = α̂W (s) =W (x) = W (x0 )e−p 0 (ξ)x0 p(ξ) dξRx= W (x0 )1p(s),p(x0 ).p(x)Èòàêg (x, s) =1W (s)p(s)y1 (x)y2 (s),y1 (s)y2 (x),x < s;x > s.(12)Çàìåòèì, ÷òî îêîí÷àòåëüíûé âèä (12) íå çàâèñèò îò âûáîðày1,2 ,îòêóäà ñëåäóåò åäèíñòâåííîñòü. 13 øëà ðå÷ü î ïîñòðîåíèè ìàòðèöû Ãðèíà êðàåâîé çàäà÷èäëÿ ñèñòåìû äèôôåðåíöèàëüíûõ óðàâíåíèé 0 Z (x) = AZ + F (x),LZ (a) = 0,RZ (b) = 0.Çàäà÷à Øòóðìà - Ëèóâèëëÿ(13) íàøåì ñëó÷àå:A=!01qp− pp0 ,0F (x) =L = (cos α, sin α),fp,Z=R = (cos β, sin β)y (x),0y (x)è ò.ä.Ìàòðèöà Ãðèíà:1)0Gx = AG ∀x 6= s ;2) G(s+0,s) - G(s-0,s) = I,3)LG (a, s) = 0, RG (b, s) = 0.Âûáåðåì ìàòðèöó Ãðèíà òàê: 0−y1 (x)y2 (s)01−y (x)y2 (s) 1G (x, s) =0−y2 (x)y1 (s)W (s) 0−y2 (x)y1 (s)ãäåy1,2y1 (x)y2 (s), x < s;0y1 (x)y2 (s)y2 (x)y1 (s), x > s,0y2 (x)y1 (s)- óïîìÿíóòûå ðåøåíèÿ.Ëåãêî çàìåòèòü, ÷òî 1) - 3) âûïîëíåíû.Çàäà÷à Øòóðìà - Ëèóâèëëÿ(14)Ñðàâíèâàÿ (12) è (14), ïîëó÷àåì:G12 (x, s) = p(s)g (x, s) (§13).Íàïîìíèì, ÷òî ñ ïîìîùüþ ìàòðèöû Ãðèíà ðåøåíèå çàäà÷èÊîøè ïðåäñòàâèìî â âèäå:bZZ (x) =G (x, s)F (s)ds.aÑëåäîâàòåëüíî,Zy (x) =bg (x, s)f (s)ds.aÈòàê, ñíîâà íàïîìíèì îïðåäåëåíèå ôóíêöèè Ãðèíàx0 ≤ x ≤ x1 , x0 < s < x1 :Çàäà÷à Øòóðìà - ËèóâèëëÿG (x, s),ss1s00x0x1Ðèñ.
31) ïðè2) ïðè00x=6 s a0 (x)y + ... = 0.x = x0 , x = x1 âûïîëíåíûêðàåâûå óñëîâèÿÇàäà÷à Øòóðìà - Ëèóâèëëÿx3) ïðèx =síåïðåðûâíîñòü ïîxè ñêà÷îê ïðîèçâîäíîé:G (s + 0, s) = G (s − 0, s),100Gx x=s+0 = Gx x=s−0 +.a0 (s)y1 (x) (6≡ 0), óäîâëåòâîðÿþùóþ ïåðâîìó êðàåâîìóóñëîâèþ, è y2 (x) (6≡ 0), óäîâëåòâîðÿþùóþ âòîðîìó êðàåâîìóóñëîâèþ. Åñëè y1 (x) íå óäîâëåòâîðÿåò îäíîâðåìåííî îáîèìÈùåìóñëîâèÿì, òî ñóùåñòâóåòG (x, s) =aèbçàâèñÿò îòay1 (x),by2 (x),s:0by2 (s) = ay1 (s),Åñëè òàêàÿGx0 ≤ x ≤ s,s ≤ x ≤ x1 .0by2 (s) = ay1 (s) +1a0 (s).ñóùåñòâóåò, òî ðåøåíèåì êðàåâîé çàäà÷è áóäåòZx1y (x) =G (s, x)f (s)ds.x0Çàäà÷à Øòóðìà - ËèóâèëëÿÏðèìåð 6.00x 2 y − 2y = f (x), y (x)îãðàíè÷åíà ïðèx →∞èx → 0.Ïîñòðîèòü ôóíêöèþ Ãðèíà.Ðåøàåì ñíà÷àëà îäíîðîäíîå óðàâíåíèå:00x 2 y − 2y = 0.Ñäåëàåì çàìåíó00x = et ⇒0λ2 − λ − 2 = 0 ⇒y − y − 2y = 0,⇒λ1 = 2, λ2 = −1,y (t) = C1 e 2t + C2 e −t == C1 x 2 +y1 (x) = x 2 ,y2 (x) = x1 ,C2.xîãðàíè÷åíà ïðèîãðàíè÷åíà ïðèG (x, s) =x → 0,⇒x → ∞.ax 2 , 0 ≤ x ≤ s,bs ≤ x ≤ ∞.x,Çàäà÷à Øòóðìà - Ëèóâèëëÿ0b(s) 1s = a(s)s 2−b s12 = a · 2s +1s2⇒11= s 3 · 3a + 1 ⇒ a = − 3 , b = −3s3x2− 3s 3 , 0 ≤ x ≤ s,G (x, s) =− 31x , s ≤ x ≤ ∞.Ïðèìåð 7.Ñâåñòè Ç.
Ø. - Ë. ê èíòåãðàëüíîìó óðàâíåíèþ.000 Ly = −(1 + e x )y − e x y = λx 2 y ,0y (0) − 2y (0) = 0, 0y (1) = 0.000−(1 + e x )y − e x y = 0⇒0< x < 1,0y =z ⇒0edz=−dx ⇒ ln |z| = − ln(1 + e x ) + C1 ⇒z1 + exZC11z(x) =y = C1dx + C2 =x1+e1 + exÇàäà÷à Øòóðìà - Ëèóâèëëÿ= C1 x − ln(1 + e x ) + C2 .Ïðèìåð 8.Íàéòè ôóíêöèþ Ãðèíà îïåðàòîðà√ 0 03Ly = −( xy ) + 3x − 2 yíà èíòåðâàëå (0, 2), åñëè|y (0)| < ∞, y (2) = 0.√ 00 1 1 03− xy − x − 2 y + 3x − 2 y = 020010−x 2 y − xy + 3y = 02⇒- óðàâíåíèå Ýéëåðà.16.
Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèÐàññìîòðèì óðàâíåíèå âòîðîãî ïîðÿäêà:00y + Q(x)y = 0,a < x < b.(1)Î÷åâèäíî, ÷òî óðàâíåíèå (1) ýêâèâàëåíòíî ñëåäóþùåé ñèñòåìåóðàâíåíèé:Ïîëîæèì0ξ=y ,0ξ = −Q(x)y .(2)ξ = r cos θ,y = r sin θ.(3)Ïðîäèôôåðåíöèðóåì ñîîòíîøåíèÿ ñèñòåìû (3) ïî ïåðåìåííîéx:000ξ = r cos θ − r sin θ · θ ,000y = r sin θ + r cos θ · θ .Ñëåäîâàòåëüíî, â ñèëó ñèñòåìû (2) ïîëó÷àåì:00ξ = r sin θ + r cos θ · θ ,00−Q(x)y = r cos θ − r sin θ · θ .Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèè(4)Òàêèì îáðàçîì, â ñèëó (3) èìååì:0r = (1 − Q)r sin θ cos θ,0θ = cos2 θ + Q(x) sin2 θ.(5)Èòàê, êàæäîìó ðåøåíèþðåøåíèåϕ(x) óðàâíåíèÿ (1) ñîîòâåòñòâóåòr = ρ(x), θ = ω(x) ñèñòåìû (5), ïðè÷åì0ρ2 = (ϕ )2 + ϕ2 ,Çàìåòèì, ÷òîçíà÷èò,ϕè0ϕω = arctg(ϕ).ϕ0(6)îäíîâðåìåííî íå îáðàùàþòñÿ â íóëü, àρ2 (x) > 0íà(a, b)è ôóíêöèÿϕ(x) = ρ(x) sin ω(x)ìîæåò îáðàùàòüñÿ â íóëü òîëüêî òîãäà, êîãäàêðàòíîåω(x)åñòü öåëîåπ.Ïðåîáðàçîâàíèå (6) ôóíêöèèÏðþôåðà.ϕ(x)íàçûâàåòñÿ ïðåîáðàçîâàíèåìÄîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèÒàê êàê ôóíêöèè cos θ è sin θ íåïðåðûâíî äèôôåðåíöèðóåìû íà[0, 2π],òî ðåøåíèå âòîðîãî óðàâíåíèÿ â ñèñòåìå (5) ñóùåñòâóåòíà (0, 2π) è åäèíñòâåííî.Äàëåå, èç (3) è (2) ñëåäóåò, ÷òî0y (x) cos θ − y (x) sin θ = 0.(7) êðàåâûõ çàäà÷àõ îáùèé âèä óñëîâèÿ â êîíå÷íîé òî÷êåx =aèíòåðâàëà òàêîâ:0y (a) cos α − y (a) sin α = 0.(8)Èç (7) ñëåäóåò, ÷òî ïîñëåäíåå óñëîâèå ýêâèâàëåòíî áîëååïðîñòîìó:θ(a) = α (modπ).(9)Íåòðóäíî çàìåòèòü, ÷òî ðàâåíñòâî (8) íå ìîæåò èìåòü ìåñòî íàðåøåíèÿõy = ϕ(x)ïðè äâóõ ðàçëè÷íûõ çíà÷åíèÿõα,òîëüêî ýòè çíà÷åíèÿ íå îòëè÷àþòñÿ íà öåëîå êðàòíîååñëè2ϕ (a) + ϕ (a) = ρ2 (a) = 0.20åñëèπèëèÑðàâíèì òåïåðü ïîâåäåíèå ðåøåíèé äâóõ óðàâíåíèé âèäà (1).Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèÒåîðåìà 1.Ïóñòü ôóíêöèèQi (x)êóñî÷íî - íåïðåðûâíû íà èíòåðâàëå[a, b]è ïóñòüQ2 (x) ≥ Q1 (x)íà00(10)[a, b].00Ïóñòü L1 ϕ1 = ϕ1 + Q1 (x)ϕ1 = 0, L2 ϕ2 = ϕ2 + Q2 (x)ϕ2 = 0ω2 (a) ≥ ω1 (a).èÒîãäàω2 (x) ≥ ω1 (x)ïðèa ≤ t ≤ b.(11)òî(12)Êðîìå òîãî, åñëèQ2 (x) > Q1 (x)íà(a, b),ω2 (x) > ω1 (x) (a < x ≤ b).(13)×òîáû äîêàçàòü íåðàâåíñòâî (11), âû÷òåì îäíî èç óðàâíåíèé0ωi = cos2 ωi + Qi sin2 ωi(i = 1, 2)èç äðóãîãî, ïîëó÷àÿ0(ω2 − ω1 ) = (Q1 − 1)(sin2 ω2 − sin2 ω1 ) + h1 ,(14)Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèãäåh = (Q2 − Q1 ) sin2 ω2 .Î÷åâèäíî, ÷òî â ñèëó íåðàâåíñòâà (10) ñïðàâåäëèâîñîîòíîøåíèåh ≥ 0.Åñëè ïîëîæèòüω2 − ω1 = u ,òî èç (14) ïîëó÷èì0u = fu + h,ãäåf = (sin ω2 + sin ω1 )Òàê êàêh ≥ 0,− sin ω1.ω2 − ω1sin ω2òî èç (15) ñëåäóåò0u − fu ≥ 0.ÅñëèZF (x) =xaf (s)ds,Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèè(15)eF ,òî, óìíîæàÿ ïðåäûäóùåå íåðàâåíñòâî íà0ïîëó÷àåì:0e F u + F e F u ≥ 0.Èíòåãðèðóÿ ýòî íåðàâåíñòâî â ïðåäåëàõ(a, x),èìååì:e F (x) u(x) ≥ e F (a) u(a) ≥ 0,(16)÷òî äîêàçûâàåò íåðàâåíñòâî (11).Åñëè íåðàâåíñòâî (13) íå èìååò ìåñòî, òî äîëæíî ñóùåñòâîâàòüòàêîåc > a,÷òîω2 (x) = ω1 (x),a ≤ x ≤ c.(17) ñàìîì äåëå, äîïóñòèì ïðîòèâíîå.
Òîãäà, â ñèëó (11), äîëæíàñóùåñòâîâàòü ïîñëåäîâàòåëüíîñòü òî÷åêòî÷êîéa,òàêàÿ, ÷òî{xj }ñ ïðåäåëüíîéω2 (xj ) > ω1 (xj ).Îäíàêî, åñëè ïðèìåíèòü íåðàâåíñòâî (16) ñ çàìåíîéïîëó÷èì, ÷òî äëÿω2 (x) > ω1 (x).x > xjaíàxj ,èìååò ìåñòî íåðàâåíñòâîÄîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèòîÒàê êàê òî÷êèìîæíî áðàòü ñêîëü óãîäíî áëèçêî êxja,òîîòñþäà ñëåäóåò íåðàâåíñòâî (13). Ïîýòîìó äîëæíîâûïîëíÿòüñÿ ðàâåíñòâî (17).Ïðèíèìàÿ âî âíèìàíèå (17), çàêëþ÷àåì, ÷òî (14) âîçìîæíîïðèQ2 > Q1ëèøü â òîì ñëó÷àå, êîãäàω1 = ω2 = 0 (modπ).Îäíàêî, â ðàâåíñòâàõ0ωi = cos2 ωi + Qi sin2 ωi(i = 1, 2)ñëó÷àéω1 = ω2 = 0 (modπ)íà èíòåðâàëå(a, c)íåâîçìîæåí. Ýòî äîêàçûâàåò íåðàâåíñòâî(13), êîãäà ñïðàâåäëèâî (12).Ðàññìîòðèì óðàâíåíèå âòîðîãî ïîðÿäêà ñ ïàðàìåòðîì:00y + (λr − q)y = 0,(18)Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèãäåλ- äåéñòâèòåëüíûé ïàðàìåòð, à ôóíêöèèrèqäåéñòâèòåëüíû è íåïðåðûâíû (èëè êóñî÷íî - íåïðåðûâíû) íàîòðåçêå[a, b]èr >0íà[a, b](ïðè ïîìîùè ìîäèôèêàöèèäîêàçàòåëüñòâ ëåãêî óñòàíîâèòü, ÷òî âîçìîæíî äîïóñòèòüîáðàùåíèåb òî÷íî òàê æå, êàê âèçîëèðîâàííûõ òî÷êàõ èíòåðâàëà (a, b)).Ïðè äàííûõ äåéñòâèòåëüíûõ α è β çíà÷åíèÿ λ, äëÿ êîòîðûõrâ íóëü â òî÷êàõaè(18) èìååò ðåøåíèå, íå ðàâíîå òîæäåñòâåííî íóëþ èóäîâëåòâîðÿþùåå óñëîâèÿì0y (a) cos α − y (a) sin α = 0,0y (b) cos β − y (b) sin β = 0,(19)(20)íàçûâàþòñÿ ñîáñòâåííûìè çíà÷åíèÿìè.Êàæäîå èç óñëîâèé (19) è (20) îïðåäåëÿåò ðåøåíèå óðàâíåíèÿ(18) ñ òî÷íîñòüþ äî ïîñòîÿííîãî ìíîæèòåëÿ.Íåòðèâèàëüíîå ðåøåíèå, óäîâëåòâîðÿþùåå (18), (19) è (20) äëÿíåêîòîðîãî ñîáñòâåííîãî çíà÷åíèÿ, íàçûâàåòñÿ ñîáñòâåííîéôóíêöèåé.Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèÑïðàâåäëèâàÒåîðåìà 2.Ñóùåñòâóåò áåñêîíå÷íî ìíîãî ñîáñòâåííûõ çíà÷åíèéλ0 , λ1 , λ2 , ...,îáðàçóþùèõ ìîíîòîííî âîçðàñòàþùóþn → ∞.
Êðîìå òîãî,ñîáñòâåííàÿ ôóíêöèÿ, ñîîòâåòñòâóþùàÿ λn , èìååò òî÷íî níóëåé íà èíòåðâàëå (a, b).ïîñëåäîâàòåëüíîñòü ñλn → ∞ïðèÄîêàçàòåëüñòâî.Íå íàðóøàÿ îáùíîñòè, ìîæíî ïðåäïîëàãàòü, ÷òî 0< β ≤ π.Ðåøåíèå ϕ = ϕ(x, λ)≤α<πè0óðàâíåíèÿ (18), îïðåäåëÿåìîåíà÷àëüíûìè óñëîâèÿìèϕ(a, λ) = sin α,0ϕ (a, λ) = cos α,óäîâëåòâîðÿåò, î÷åâèäíî, óñëîâèþ (19).Ñîáñòâåííûìè çíà÷åíèÿìè ÿâëÿþòñÿ òå çíà÷åíèÿλ,êîòîðûåóäîâëåòâîðÿþò óñëîâèþ (20).Äëÿy = ϕ(x, λ) ìîæíî, î÷åâèäíî, îïðåäåëèòü ω òàê, ÷òîáûθ = ω(x, λ) óäîâëåòâîðÿëà ðàâåíñòâó ω(a, λ) = α.Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèôóíêöèÿ ñèëó òåîðåìû 1θ = ω(x, λ) äëÿ ôèêñèðîâàííîãî x< x ≤ b ) åñòü ìîíîòîííî âîçðàñòàþùàÿ ôóíêöèÿ îò λ.Åñëè ω = 0 (modπ ), òî ϕ = 0.
Èç ðàâåíñòâà(a0ωi = cos2 ωi + Qi sin2 ωiïîëó÷àåì(i = 1, 2)0θ = cos2 θ + (λr − q) sin2 θ,è î÷åâèäíî, ÷òî åñëè0ω=0(21)(modπ ), òîω > 0.Ýòî îçíà÷àåò, ÷òî åñëèôóíêöèÿ îòω=0(modπ ), òîω- âîçðàñòàþùàÿx.Òàêèì îáðàçîì, åñëè äëÿ íåêîòîðîãî tk èç èíòåðâàëàôóíêöèÿ ω(xk , λ) = kπ , òî ω(x, λ) > kπ äëÿ x > xk èω(x, λ) < kπäëÿ(a, b)x < xk .Êðîìå òîãî, òàê êàê ôóíêöèÿωïîλìîíîòîííà, òî èçïðåäûäóùåãî ñëåäóåò, ÷òî ïðè âîçðàñòàíèèλíóëèâîîáùå ñóùåñòâóþò, ïåðåäâèãàþòñÿ âëåâî ê òî÷êåϕ, åñëèx =aîíè(ñìîòðè òàêæå òåîðåìó 6 èç 15). Ïðîöåññ äâèæåíèÿ íóëåéèçîáðàæåí íà ðèñ. 1.Äîêàçàòåëüñòâî òåîðåìû îá îñöèëëÿöèèq2ppa0ax1Ðèñ.