L-6-Autmn2017 (824141), страница 2
Текст из файла (страница 2)
¥. A1 = pA, B1 = pB ¤«ï ¥ª®â®à®£® ç¨á« p 6= 0. ®£¤ (6.13) § ¯¨áë¢ ¥âáï ª ªAx + By + C= 0,pAx + pBy + C1= 0,A2 + B 2 6= 0.(6.15) ᫨ C1 6= pC , â® ®ç¥¢¨¤®, çâ® ãà ¢¥¨ï (6.15) ¥ ¨¬¥îâ ®¡é¨å à¥è¥¨©. ᫨¦¥ C1 = pC , â® ä®à¬ «ì® ¤¢ à §ëå ãà ¢¥¨ï ®¯à¥¤¥«ïîâ ®¤ã ¨ âã ¦¥ ¯àï¬ãî ¯«®áª®áâ¨.⢥ত¥¨¥ ¤®ª § ®. § ¥£® ¢ë⥪ îâ ¯¯. 10 , 20 ⥮६ë 6.5. ¥©á⢨⥫ì®, ¤®áâ â®ç®áâì ãá«®¢¨© ¯¯.
10 , 20 ¯à®¢¥à¥ ¢ ç á⨠(⇐). â®¡ë ¤®ª § â쥮¡å®¤¨¬®áâì ãá«®¢¨© ¯¯. 10 , 20 § ¬¥â¨¬, çâ®, ª ª ¬ë ¯®ª § «¨ ¢ ã⢥ত¥¨¨, ¯à ¢«ïî騥 ¢¥ªâ®àë ¯àï¬ëå (6.13) ¤®«¦ë ¡ëâì ª®««¨¥ àë, ¨ ⮣¤ ¥á«®¦®¯à®¢¥à¨âì (íâ® ¯à ªâ¨ç¥áª¨ ¯à®¤¥« ® ¢ëè¥), çâ®A1AA1A==B16=BB1=BC1CC1C| ¯àï¬ë¥ ¥ ¯¥à¥á¥ª îâáï (¯ à ««¥«ìë),| ¯àï¬ë¥ ᮢ¯ ¤ îâ.7. 30 ä ªâ¨ç¥áª¨ ¤®ª § µ¢ ç á⨠(⇒¶ ) ¤®ª § ⥫ìá⢠ã⢥ত¥¨ï. ¥©á⢨⥫ì®, ¥á«¨ AA1 6= BB1 , â® det AA BB 6= 0 ¨ á¨á⥬ (6.14) ¨¬¥¥â ¥¤¨á⢥®¥11à¥è¥¨¥ (¯àï¬ë¥ ¯¥à¥á¥ª îâáï ¢ ¥¤¨á⢥®© â®çª¥).
¡à â®, ¯àï¬ë¥ ¯¥à¥á¥ª îâáï¢ ¥¤¨á⢥®©â®çª¥ ⇔ á¨á⥬ (6.14) ¨¬¥¥â ¥¤¨á⢥®¥ à¥è¥¨¥ ⇔¶µA B¥det A B 6= 0 ⇒ A2 + A21 6= 0, B 2 + B12 6= 0 ⇒ AA1 6= BB1 .11®çª¨, ¥ à §¤¥«¥ë¥ ¯àאַ©. ®«ã¯«®áª®á⨯।¥«¥¨¥ 6.6. áᬮâਬ ¯àï¬ãî l:Ax + By + C = 0. ®çª¨M1 , M2 á¯àאַ© Ax +ª®®à¤¨ â ¬¨ (x1 , y1 ), (x2 , y2 ) ᮮ⢥âá⢥®, ¥ ¯à¨ ¤«¥¦ 騥By + C = 0 (⇔ Ax1 + By1 + C 6= 0, Ax2 + By2 + C 6= 0), §®¢¥¬ ¥ à §¤¥«¥ë¬¨¯àאַ© Ax + By + C = 0 ⇔ [M1 , M2 ] ∩ l = ∅.¥®à¥¬ 6.5 (ªà¨â¥à¨© ý¥à §¤¥«¥®áâ¨þ).
®çª¨ M1 (x1 , y1 ), M2 (x2 , y2 ) ¥à §¤¥«¥ë ¯àאַ© l : Ax + By + C = F (x, y) = 0 ⇔ F (x1 , y1 )F (x2 , y2 ) > 0.®ª § ⥫ìá⢮. ®ª ¦¥¬ íª¢¨¢ «¥â®¥ ã⢥ত¥¨¥: â®çª¨ [M1 , M2 ] ∩ l 6= ∅ ⇔F (x1 , y1 )F (x2 , y2 ) ≤ 0.⬥⨬, çâ® F (x1 , y1 )F (x2 , y2 ) = 0 ⇔ ¨«¨ {M1 } ⊆ [M1 , M2 ] ∩ l, ¨«¨ {M2 } ⊆[M1 , M2 ] ∩ l. ® ¨§ ⥮६ë 6.4 á«¥¤ã¥â, çâ®{ ¨«¨ {M1 } = [M1 , M2 ] ∩ l,{ ¨«¨ {M2 } = [M1 , M2 ] ∩ l,{ ¨«¨ [M1 , M2 ] ⊂ l. ª¨¬ ®¡à §®¬, ¬ ®áâ ¥âáï ¤®ª § âì(M1 , M2 ) ∩ l 6= ∅ ⇔ F (x1 , y1 )F (x2 , y2 ) < 0.(6.16)(⇒) áᬮâਬ ¯ à ¬¥âà¨ç¥áª¨¥ ãà ¢¥¨ï ®â१ª [M1 M2 ]:x(t) = x1 (1 − t) + x2 t,y (t) = y1 (1 − t) + y2 t,t ∈ [0, 1].(6.17)«ï ⮣®, çâ®¡ë ¢ëïá¨âì, ª®£¤ (M2 M1 ) ¨¬¥¥â ®¡é¨¥ â®çª¨ á ¯àאַ© l, ¯®¤áâ ¢¨¬ãà ¢¥¨ï (6.17) ¢ ãà ¢¥¨¥ F (x, y) = 0, ¢ १ã«ìâ ⥠¯®«ã稬A(x1 (1 − t)+ x2 t)+ B (y1 (1 − t)+ y2 t)+ C ((1 − t)+ t) = (1 − t)F (x1 , y1 )+ tF (x2 , y2 ) = 0,®âªã¤ F (x1 , y1 ).F (x1 , y1 ) − F (x2 , y2 )(6.18)F (x1 , y1 )< 1.F (x1 , y1 ) − F (x2 , y2 )(6.19)t=ë å®â¨¬ § âì, ª®£¤ t ¨§ (6.18) ¯à¨ ¤«¥¦¨â (0, 1).
«ï í⮣® à¥è¨¬ ¥à ¢¥á⢮0<8ãáâì, ¯à¨¬¥à, F (x1 , y1 ) > 0, ⮣¤ ¤«ï ¢ë¯®«¥¨ï «¥¢®£® ¥à ¢¥á⢠¨§ (6.19)¥®¡å®¤¨¬®, ç⮡ë F (x1 , y1 ) − F (x2 , y2 ) > 0. ®£¤ ¨á¯®«ì§ã¥¬ ¯à ¢®¥ ¥à ¢¥á⢮¨§ (6.19), ¯®«ãç ¥¬F (x1 , y1 ) < F (x1 , y1 ) − F (x2 , y2 ) ⇔ F (x2 , y2 ) < 0. «®£¨ç® à áᬠâਢ ¥âáï á«ãç © F (x1 , y1 ) < 0. . ¥.
¥á«¨ â®çª¨M2 (x2 , y2 ) à §¤¥«¥ë ¯àאַ© Ax + By + C = 0, â®M1 (x1 , y1 ),F (x1 , y1 )F (x2 , y2 ) < 0.(⇐) ãáâì â®çª¨ M1 (x1 , y1 ), M2 (x2 , y2 ) â ª¨¥, çâ® F (x1 , y1 )F (x2 , y2 ) < 0. ãáâì, ¯à¨¬¥à, F (x1 , y1 ) > 0, ⮣¤ F (x2 , y2 ) < 0, ¯®í⮬ã F (x1 , y1 ) − F (x2 , y2 ) > 0 ¨F (x1 , y1 ) − F (x2 , y2 ) > F (x1 , y1 ), ¯®í⮬㠨¬¥¥â ¬¥áâ® (6.19). ¡®§ 稬t0=F (x1 , y1 ).F (x1 , y1 ) − F (x2 , y2 )¥á«®¦® ¢¨¤¥âì, çâ®A(x1 (1 − t0 ) + x2 t0 ) + B (y1 (1 − t0 ) + y2 t0 ) + C ((1 − t0 ) + t0 ) = 0..
¥. ®â१®ª (M1 M2 ) ¨¬¥¥â â®çªã ¯¥à¥á¥ç¥¨ï á ¯àאַ© l.¥àï¬ ï Ax + By + C = 0 ¤¥«¨â ¯«®áª®áâì ¤¢ ¥¯¥à¥á¥ª îé¨åáï ¬®¦¥á⢠+PA,B= {∪M (x, y) | Ax + By + C > 0} | ¯®«®¦¨â¥«ì ï ¯®«ã¯«®áª®áâì,−PA,B= {∪M (x, y) | Ax + By + C < 0} | ®âà¨æ ⥫ì ï ¯®«ã¯«®áª®áâì.®ïâ®, çâ® â¥à¬¨ë ý¯®«®¦¨â¥«ì ïþ, ý®âà¨æ ⥫ì ïþ §¤¥áì ®áïâ ãá«®¢ë©å à ªâ¥à: ¤®áâ â®ç® 㬮¦¨âì ®¡¥ ç áâ¨ à ¢¥á⢠Ax + By + C = 0 −1, ¨ý¯®«®¦¨â¥«ì ï ¯®«ã¯«®áª®áâìþ áâ ¥â ý®âà¨æ ⥫쮩 ¯®«ã¯«®áª®áâìîþ.¯à¥¤¥«¥¨¥ 6.7. ¥ªâ®à, á® ¯à ¢«¥ë© ¢¥ªâ®àã c ª®®à¤¨ â ¬¨ (A, B ), §ë¢ ¥âáï ¯®«®¦¨â¥«ì®© (¢¥è¥©) ®à¬ «ìî ª ¯àאַ© Ax + By + C = 0; ¢¥ªâ®à,á® ¯à ¢«¥ë© ¢¥ªâ®àã c ª®®à¤¨ â ¬¨ (−A, −B ), §ë¢ ¥âáï ®âà¨æ ⥫쮩(¢ãâ॥©) ®à¬ «ìî ª ¯àאַ© Ax + By + C = 0.⢥ত¥¨¥ 6.1.
®¥æ ¢¥ªâ®à (A, B ), ¨á室ï饣® ¨§ â®çª¨ á ª®®à¤¨ â ¬¨+ .(x0 , y0 ), Ax0 + By0 + C = 0, ¢á¥£¤ ¯à¨ ¤«¥¦¨â ¬®¦¥áâ¢ã PA,B®ª § ⥫ìá⢮. ®¤áâ ¢¨¬ â®çªã (x0 + A, y0 + B ) ¢ ¢ëà ¦¥¨¥ Ax + By + C , ¢¡¢¡à¥§ã«ìâ ⥠¯®«ã稬 A x0 + A + B y0 + B ) + C = A2 + B 2 > 0.¥.