КОМПЛЕКСЫ (792031), страница 6
Текст из файла (страница 6)
[ML2] + L [ML3]
…….
[ML(n1)] + L [MLn]
Процесс комплексообразования завершается, когда число присоединившихся монодентатных лигандов L станет равным координационному числу комплексообразователя M. При этом устанавливается динамическое равновесие, поскольку наряду с образованием комплексов идет и их диссоциация.
5.4. Ступенчатая и полная константы образования
Состояние равновесия реакций комплексообразования можно охарактеризовать ступенчатой константой образования Ki(обр) комплекса, а именно:
M + L [ML]; K1(обр) = [ML] / {[M] [L]}
[ML] + L [ML2]; K2(обр) = [ML2] / {[ML] [L]}
Для n-ой ступени комплексообразования ступенчатая константа образования Kn равна:
[ML(n1)] + L [MLn]; Kn(обр) = [MLn] / {[ML(n1)] [L]}
Существует и другой способ описания равновесия при комплексообразовании – с помощью полных (или суммарных) констант образования данного комплекса i(обр):
M + L [ML]; 1(обр) = [ML] / {[M] [L]}
M + 2 L [ML2]; 2(обр) = [ML2] / {[M] [L]2}
M + 3 L [ML3]; 3(обр) = [ML3] / {[M] [L]3}
…….
M + n L [MLn]; n(обр) = [MLn] / {[M] [L]n}
5.5. Константы образования и прочность комплексов
Полная константа образования комплекса n(обр) характеризует устойчивость комплексного соединения: чем больше значение n(обр), тем более устойчив комплекс данного состава. Например, сравнивая константы образования катиона диамминсеребра(I) и дицианоаргентат(I)-иона:
(1) Ag+ + 2 NH3 [Ag(NH3)2]+; 2(обр) = 2,5 . 106
(2) Ag+ + 2 CN [Ag(CN)2]; 2(обр) = 1,2 . 1021
сделаем очевидный вывод о большей прочности второго комплекса – аниона [Ag(CN)2] , поскольку, судя по большему значению константы образования, равновесие в реакции (2) сильнее сдвинуто вправо, чем в (1).
Индекс n у константы образования комплекса равен координационному числу центрального атома в том комплексном соединении, которое оценивается.
Нетрудно заметить, что величина n(обр) связана со ступенчатыми константами образования Ki(обр) соотношением:
n(обр) = K1(обр) K2(обр) K3(обр) … Kn(обр)
5.6. Константы нестойкости
Если вместо равновесия в реакциях образования комплексов рассматривать обратный процесс – реакции диссоциации комплексов (или реакции обмена лигандов на молекулы растворителя), то соответствующие константы будут носить название ступенчатых констант нестойкости комплексов:
[ML] M + L; K1(нест) = [M] [L] / [ML]
[ML2] [ML] + L ; K2(нест) = [ML] [L] / [ML2]
…….
[MLn] [ML(n1)] + L; Kn(нест) = [ML(n1)] [L] / [MLn];
и общих (суммарных) констант нестойкости комплексов:
[ML] M + L; 1(нест) = [M] [L] / [ML]
[ML2] M + 2 L; 2(нест) = [M] [L]2 / [ML2]
[ML3] M + 3 L; 3(нест) = [M] [L]3 / [ML3]
…….
[MLn] M + n L; n(нест) = [M] [L]n / [MLn]
Ступенчатые и общие константы образования и нестойкости комплексов соотносятся друг с другом как обратные величины:
n(обр) = 1 / n(нест); Kn(обр) = 1 / Kn(нест),
поэтому для сравнения прочности комплексов могут использоваться справочные данные как по значениям констант образования, так и констант нестойкости.
Ступенчатое комплексообразование можно проиллюстрировать примером взаимодействия иона Hg2+ (как комплексообразователя) с ионами Cl (как лигандом):
Hg2+ + Cl [HgCl]+; K1(обр) = 1,85 . 105
[HgCl]+ + Cl [HgCl2]; K2(обр) = 3,2 . 107
[HgCl2] + Cl [HgCl3] ; K3(обр) = 14
[HgCl3] + Cl [HgCl4]2 ; K4(обр) = 10
Чем больше концентрация хлоридных ионов, тем с большим координационным числом образуется комплексное соединение. Как только будет достигнуто максимально возможное для данного комплексообразователя координационное число, образование новых комплексных соединений приостанавливается, и при дальнейшем увеличении концентрации лиганда наблюдается постепенное исчезновение в растворе комплексных частиц с меньшими координационными числами.
Из рис. 2 видно, что уже при концентрации хлорид-ионов, равной 1 . 105 моль/л, в растворе полностью исчезают катионы Hg2+ и образуются преимущественно нейтральные частицы [HgCl2]. При концентрации хлорид-ионов около 0,1 моль/л в растворе присутствуют комплексы [HgCl2], [HgCl3] и [HgCl4]2 .
При концентрации ионов Cl свыше 1 моль/л в растворе присутствуют только тетрахлоромеркурат(II)-ионы [HgCl4]2 , которые довольно легко диссоциируют, отщепляя хлоридный лиганд, но обладают достаточно высокой полной константой образования:
4(обр) = K1(обр) K2(обр) K3(обр) K4(обр) =
= (1,85 . 105) (3,2 . 107) 14 10 = 8,3 . 1014
Таким образом, полная константа образования дает возможность судить об отсутствии склонности комплекса к полной диссоциации, а ступенчатая константа образования свидетельствует об устойчивости отдельных форм комплексных ионов или нейтральных комплексов.
Как правило, ступенчатые константы образования уменьшаются по мере возрастания числа лигандов. Например, взаимодействие такого комплексообразователя, как ион Cd2+, с молекулами аммиака, выполняющими функции лиганда, протекает поэтапно, с постепенным уменьшением значения ступенчатой константы образования:
Cd2+ + NH3 [Cd(NH3)]2+ ; K1(обр) = 450
[Cd(NH3)]2+ + NH3 [Cd(NH3)2]2+ ; K2(обр) = 126
[Cd(NH3)2]2+ + NH3 [Cd(NH3)3]2+ ; K3(обр) = 27,5
[Cd(NH3)3]2+ + NH3 [Cd(NH3)4]2+ ; K4(обр) = 8,5
[Cd(NH3)4]2+ + NH3 [Cd(NH3)5]2+ ; K5(обр) = 0,47
[Cd(NH3)5]2+ + NH3 [Cd(NH3)6]2+ ; K6(обр) = 0,02
Однако бывают и исключения, например, уже указанные выше хлоридные комплексы ртути(II).
Среди причин закономерного уменьшения значений ступенчатых констант образования с увеличением числа лигандов прежде всего выделяют возрастание пространственных затруднений в размещении вокруг комплексообразователя все большего числа лигандов и электростатическое отталкивание одноименно заряженных лигандов.
5.7. Примеры образования и разрушения комплексов
Рассмотрим некоторые примеры образования и разрушения комплексных соединений в растворе.
При растворении фторида калия в желтом растворе FeCl3 наблюдается обесцвечивание последнего вследствие образования очень прочного гексафтороферратного аниона:
[Fe(H2O)6]3+ + 6 F [FeF6]3 + 6H2O
В этой реакции комплексообразования происходит замещение в комплексных аквакатионах слабо связанных с комплексообразователем молекул воды на фторид-ионы с образованием очень устойчивого комплексного аниона.
При добавлении водного раствора аммиака к белому осадку хлорида серебра(I) образуется бесцветный устойчивый ион диамминсеребра(I), при этом осадок AgCl растворяется:
AgCl(т) + 2 NH3 . H2O [Ag(NH3)2]+ + Cl + 2 H2O
В этом случае концентрация ионов Ag+, присутствующих в насыщенном растворе AgCl за счет фазового равновесия
AgCl(т) Ag+ + Cl,
будет уменьшаться из-за их связывания в виде довольно прочных комплексных катионов диамминсеребра(I) с 2(обр), равной 1,6 . 107. В результате произведение концентраций Ag+ и Cl становится ниже значения произведения растворимости AgCl, и осадок растворяется.
Голубой осадок гидроксида меди(II) под действием водного раствора аммиака также переходит в растворимое комплексное соединение синего цвета:
Cu(OH)2 + 4 NH3 . H2O [Cu(NH3)4]2+ + 2 OH + 4 H2O,
так как ион меди(II) образует очень прочный комплексный катион состава [Cu(NH3)4]2+, с константой образования 2(обр), равной 7,9 . 1012 . Процесс образования комплекса отвечает следующим реакциям:
Cu(OH)2(т) Cu2+ + 2 OH
Cu2+ + 4 NH3 . H2O [Cu(NH3)4]2+ + 4 H2O,
В растворе, содержащем комплексные катионы [Cu(NH3)4]2+, концентрация катионов Cu2+ весьма мала и недостаточна для достижения значения произведения растворимости гидроксида меди(II) (ПР = 5,6 . 1020). Но при добавлении к раствору [Cu(NH3)4]2+ раствора сульфида аммония выпадает черный осадок CuS (ПР = 1,4 . 1036), а комплексный ион разрушается:
[Cu(NH3)4]2+ Cu2+ + 4 NH3 . H2O
Cu2+ + S2 CuS(т)
_________________________________
[Cu(NH3)4](OH)2 + (NH4)2S + 4 H2O = CuS(т) + 6 NH3 . H2O
Следовательно, концентрация ионов Cu2+, образующихся при диссоциации комплекса – иона тетраамминмеди(II), является достаточной для достижения произведения растворимости сульфида меди(II). Сульфид-ионы связывают ионы меди в осадок, практически нерастворимый в воде, концентрация Cu2+ понижается, и равновесие диссоциации [Cu(NH3)4]2+ смещается вправо, что приводит в конечном счете к разрушению комплекса.
Образование одного более прочного комплексного соединения может привести в полной диссоциации и разрушению другого, менее прочного комплекса. Например, реакция:
[Ag(NH3)2]Cl + 2 KCN + 2 H2O = K[Ag(CN)2] + KCl + 2 NH3 . H2O
является практически необратимой из-за большого значения константы образования дицианоаргентат(I)-иона. Полные константы образования катиона диамминсеребра(I) и дицианоаргентат(I)-иона равны соответственно 1,6 . 107 и 7,1 . 1019. Это значит, что комплексный ион [Ag(CN)2] прочнее, чем [Ag(NH3)2]+.
Из приведенных примеров видно, что возможность образования комплексного соединения в значительной мере зависит от значения полной константы образования n. Чем оно больше, тем меньше в растворе свободных ионов комплексообразователя, тем прочнее, устойчивее к воздействию других веществ будет данный комплекс.
Устойчивость комплексных соединений зависит от прочности химической связи между комплексообразователем и лигандами, поэтому в зависимости от природы последних значение константы образования меняется в широких пределах.