Диссертация (786091), страница 81
Текст из файла (страница 81)
2007. Vol. 87. No. 2. P. 94–101.[459] Eringen A.C. and Suhubi E.S. Nonlinear theory of simple micro-elasticsolids// Int. J. Engn. Sci. 1964. V. 2. 189–203, 389–404.[460] Eringen A.C. Theory of micropolar plates // Zeitschrift für AngawandteMathematik und Physik. 25.01.1967. Vol. 18. №1, pp.
12–30.[461] Eringen A.C. Balanse laws of micromorfhic mechanics// Int. J. Engn. Sci.1970. 8. №10. 819–828. (перев. в сб. "Механика". 1971. 4(128). 119–128).[462] Eringen A.C. Microcontinuum Field Theories. 1. Foundation and solids.Springer-Verlag. N.Y.: 1999. 341 p.[463] Eringen A.C. Microcontinuum Field Theories.
2. Micropolar fluids.Springer-Verlag. N.Y.: 2000.[464] Galerkin B.G. Contribution à la solution générale du problème de lathéorie de l’élasticité dans le cas de trois dimensions. C.R. Acad. Sci.,190 (1930), 1047–1048.381[465] Galerkin B.G. Contribution à la solution générale du problème de lathéorie de l’élasticité dans le cas de trois dimensions.
C.R. Acad. Sci.,193 (1931), 568–571.[466] Gauthier R.D., Jahsman W.E. A quest for micropolar elastic constants.Pt 2// Arch. Mech. 1981. V. 33. №5. P. 717–737.[467] Giarletta G., Iezan D. Non-classical elastic solids. Longman, Scientific andTechnical, John Wiley and Sons. Inc. New-York. 1993. 345 p.[468] Green A.E., Zerna W. Theoretical Elasticity. Oxford, 1954, 442 p.[469] Hencky H. Über die Berücksichtigung der Shubverzerrung in ebenenPlatten// Ingenieur-Archiv. 1947. Bd 16. S.
72–76.[470] Hjalmarr S. Non-linear micropolar theory// Mechanics of MicropolarMedia (Eds. O.Brulin and R.K.T.Hsieh). Word Scicntic. 1982. 147–185.[471] Hodges D.H., Lee B.W., Atilgan A.R. Application of the variationalasymptotical method to laminated composite pllates// AIAA J. 1993.Vol.
31(9). P. 1674–1683.[472] Johnson P., Rasolofosaon P.N. Manifestation of nonlinear elasticity inrosk: convincing evidence over large frequency and strain intervals fromlaboratory studies // Nonlinear Processes in Geophysics. 1996. V. 32.P. 77–88.[473] Kienzler R.
Erweiterung der klassischen Schalentheorie; der Einfluß vonDickenverzerrung und Querschnittverwölbungen// Ingenieur-Archiv. 1982.Bd 52. S. 311–322.[474] Kirchhoff G. Über das Gleichgewicht und die Bewegung einer elastichenScheibe// J. Reine Angew. Math. 1850. Bd 40. S. 51–88.[475] Kosevich A.M. Crystal Lattice: Phonons, Solitons, Dislocations. Berlin,New York, Wiley-VCI-I, 1999.[476] Kroner E., Datta B.K.
Non-local theory of elasticity for a finiteinhomogeneous medium - a derivation from lattice theory. В кн."Fundamental aspects of dislocation theory (Conference Proc.) eds. J.Simmons, R. de Wit, National Bureau of Standards. Washington: 1970.V.
II. 737–746.[477] Kunin I.A. Elastic Media with Microstructure. Parts I and II. SpringerSeries in Solid-State Sciences. Vol. 26 and 43. Berlin: Springer-Verlag(1982, 1983).[478] Lakes R. S. and Benedict R. L. Noncentrosymmetry in micropolarelasticity. International Journal of Engineering Science. 1982. 29.1161-1167.[479] Lakes R.S. Experimental methods for study of Cosserat elastic solids andother generalized elastic continua// Continuum models for materials withmicro-structure/ Ed. by H.
Muehlhaus. N.Y.: Wiley. 1995. P. 1–22.[480] Levinson M. An accurate simple theory of the statics and dynamics ofelastic plates// Mech. Res. Comm. 1980. Vol. 7. №6. P.343–350.[481] Lewinski T. On refined plate models based on kinematical assumptions//Ingenieur-Archiv. 1987. Bd. 57. S.133–146.382[482] Lewinski T. On displacement-based theories of sandwich plates with softcore// Mech. Res. Comm. 1990.
Vol. 17. № 6. P.375–382.[483] Lo K.H., Christensen R.M., Wu E.M. A high-order theory of platedeformation. Pt. I: Homogeneous plates// Trans. ASME. J. Appl. Mech.1977. Vol. 44. № 4. P. 663–668.[484] Mac Cullagh J. An essay towards a dynamical theory of CrystallineReflection and Refraction //Trans.Roy.Irish.Acad.Sci. 1839. V. 21. 17–50.[485] Makowski J., Pietraszkiewicz W. Thermomechanics of shells with singularcurves.
Gdansk: Institute of Fluid-Flow Machinery, PAS, 2002. Zesz. Nauk.No 528/1487/2002. 100 p.[486] Metrikine A.V., Askes H. One-dimensional dynamically consistentgradient elasticity models derived from a discrete microstructure - Parti:Generic formulation // European Journal of Mechanics A/Solids. V. 21.2002. 555–572.[487] Metrikine A.V., Askes H. An isotropic dynamically consistent gradientelasticity model derived from a 2D lattice // Philosophical Magazine.
V.86. №21- 22. 2006. 3259–3286.[488] Mindlin R.D. Note on the Galerkin and Papkovich Stress Functions. Bull.Amer. Math. Sos. 42 (1936), 373–376.[489] Mindlin R.D., Medick M.A. Extensional Vibrations of Elastic Plates//Journal of Applied Mechanics. Vol. 26. №4/Trans. ASME.
Vol. 81. SeriesE. Dec. 1959. P. 561–569.[490] Naghdi P. The theory of shells and plates// Handbuch der Physik. Berlin:Springer. 1972. Bd. VI a/2. S. 425–640.[491] Neuber H. Ein neuer Ansatz zur Lösung räumlicher Probleme derElastizitätstheorie// Zeitsch. für angew. Math. und Mech. 14. №4. 1934.203–212.[492] Nikolaevskii V.N. Continuum approach to the theory of waves infragmentary media// Phys. Earth Planet. Inter. 1988. V. 50. №1. 32–38.[493] Noor A.K., Burton W.S.
Assessment of shear deformation theories formultilayered composite plates// Appl. Mech. Rev. 1989. Vol. 42. № 1.P. 1–13.[494] Noor A.K., Burton W.S. Stress and free vibation analyses of multilayeredcomposite plates// Composite Structures. 1989. Vol. 11. P. 183–204.[495] Noor A.K., Burton W.S. Assessment of computational models formultilayered anisotropic plates// Composite Structures. 1990. Vol.
14.P. 233–265.[496] Noor A.K., Burton W.S. Assessment of computational models formultilayered anisotropic plates// Appl. Mech. Rev. 1990. Vol. 43. № 4.P. 67–97.[497] Patel H.P., Kennedy R.H. Nonlinear finite element analysis for compositestructures of axisymmetric geometry and loading// Comput.
a Struc. 1982.Vol. 15. № 1. P. 79–84.[498] Pavlov I.S., Lisina S.A., Potapov A.I. Nonlinear Acoustic Waves inMicropolar and Granular Media // Nonlinear Acoustics at the Beginningof the 21st Century (Edited by O.V. Rudenko and O.A. Sapozhnikov).Moscow: 2002. V. 2. 665–668.383[499] Pflüger A. Elementare Schalenstatic. 5-te Auflage. Berlin: Springer Verlag,1981, VIII, 128 S.[500] Pietraszkiewicz W., Eremeyev V.
A., Konopiґnska V. Extended non-linearrelations of elastic shells undergoing phase transitions //ZAMM. 2007. Vol.87. No 2. P. 150–159.[501] Pipkin A.C. Constraints in linearli elastic materials// J. Elast. 1976. V. 6,№2. P. 179–193.[502] Potapov A.I., Pavlov I.S., Lisina S.A. Acoustic identification ofnanocrystalline media // Journal of Sound and Vibration 2009. V. 322.564–580.[503] Potapov A.I., Pavlov I.S. Nonlinear waves in ID oriented media. AcousticsLetters. 1996. 19. 110–115.[504] Potapov A.I., Pavlov I.S., Maugin G.A. Nonlinear wave interactions in IDcrystals with complex lattice. Wave Motion. 1999.
V. 29. 297–312.[505] Potapov A.I., Pavlov I.S., Potapova S.A. Vibro-acoustic analysis ofphysical properties of nonlinear oriented media. In: New Advances in ModalSynthesis of Large Structures. Ed. L.Jezequel. Balkema, Rotterdam (theNetherlands). 1997. 399–410.[506] Pouget J., Maugin G.A. Nonlinear dynamics of oriented elastic solids, Part1,2// J.
of Elasticity. 1989. 22. 135–155, 157–183.[507] Preußer G. Eine Systematische Herleitung verbesserter Plattentheotien//Ingenieur-Archiv. 1984. Bd 54. S. 51–61.[508] Puck A. Festigkeitsanalyse an Faser-Matrix-Laminaten: Realistischebruchkriterien und Degrationsmodelle. München: Hanser, 1996.[509] Reddy J.N. On the generalization of displacement-based laminatetheories// Appl.
Mech. Rev. 1993. Vol. 42. № 11. Pt. 2. P. S213–S222.[510] Reissner E. On the theory of bending of elastic plates// J. Math. andPhys. Vol. 23. 1944, p. 184–191.[511] Reissner E. Finite deflection of sandwich plates// J. Aeronaut. Sci., 1948,vol. 15, №7. P. 435–440.[512] Reissner E. Reflections of the theory of elastic plates// Appl. Mech. Rev.1985. vol.
38. №11. P. 1453–1464.[513] Robbins D.H., Reddy J.N. Modelling of thick composites using a layerwiselaminate theory// Int. J. Nummer. Meth. Engng. 1993. Vol. 36. P. 655–677.[514] Rubin M. B. Cosserat theories: shells, rods and points. (Ser.: SolidMechanics and its applications. Vol. 79., Ed.
G. M. L. Gladwell) Dordrecht,Boston, London: Kluwer Academic Publishers, 2000. 480 p.[515] Sandru N. On some problems of the linear theory of the asymmetricelasticity// Int. J. Eng. Sci. 1966. 4. N 1. 81–94.[516] Sansone G. (Сансоне) Orthogonal functions. Interscience Publishers, NewYork. 1959.[517] Schäfer H. Das Coccerant-Kontinumm// ZAMM: 1967. Bd. 47, H.
8,S. 485–498.[518] Shaofan Li, Gang Wang Introduction in Micromechanics andnanomechanics. World Scientific Publ. Co, 2008. 504 p.384[519] Stalnaker D.O., Kennedy R.H., Ford I.L. Interlaminar shear strain intwoplay balanced cord-rubber composite// Expl. Mech. 1980. Vol. 20. № 3.P. 87–94.[520] Toupin R.A. Theories of elasticity with couple-stresses, Arch. Rat. Mech.Anal. 1964. V. 17. P. 85–112 (перев.