Главная » Просмотр файлов » Топчеев Ю.И., Цыпляков А.П. Задачник по теории автоматического регулирования (1977)

Топчеев Ю.И., Цыпляков А.П. Задачник по теории автоматического регулирования (1977) (1249285), страница 79

Файл №1249285 Топчеев Ю.И., Цыпляков А.П. Задачник по теории автоматического регулирования (1977) (Топчеев Ю.И., Цыпляков А.П. Задачник по теории автоматического регулирования (1977)) 79 страницаТопчеев Ю.И., Цыпляков А.П. Задачник по теории автоматического регулирования (1977) (1249285) страница 792021-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 79)

Определить параллельное импульсное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. рнс. 8.28, в) с помощью в-преобразования, если 0„' = 100 с '; 7,' ~ 50', а ее неизменяемая часть ав (1 — е ) (Твв+ 1) ~ (Тввг + 2~оТ!в+ 1) (Твв+ 1) где й, = 0,25 с; Т, = 0,7 с; 6, = 0,71; Тв = 0,33 с; Т, = 0,67 с, Т =0,5 с.

8.44. Определить последовательное импульсное корректирующее устройство дискретно-непрерывной системы автоматического регу)!ирования, если е — вг в(в) ~ ге ) ° где Т, = 2,5 с; Т = 0,2 с, обеспечивая установившуюся ошибку от действия постоянного единичного входного сигнала д Щ = 0,05 [11. Реализовать полученное корректирующее устройство в виде импульсной )(С-цепочки или линии задержек. 8.46. Определить последовательное импульсное йорректирующее устройство дискретно-непрерывной системы автоматического регулирования, если Ое — — 60 с '; 0; = 9 с ', о,'е.х ~ 30%; (р*.=- -0,6 с> а ае(1 — е в ) вв (Твв + 1) (Твв+ 1) (Твв + 1) где й, = 1О с ', Т, = О,! с; Т, = 0,05 с; Т, = 0,001 с; Т = 0,05 с.

8.46. Определить последовательное импульсное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. рис. 8.28, а), если 7, ~ 50'; о ( 25%; !р ~ 5,5 с, а «А 1 е вг (66(в)= в(в ! В ! (РкА(в)= э где й„= 0,695 с ', Т = 2 с. Реализовать полученное корректирующее устройство в виде программы на трехадресной управляющей ЦВМ. 8.47. По передаточной функции И'и 3— Ц(г) 0944г г(1 — 1,602г г+0,698г в) Е (г) (1 — 0,436г в) (1 — 1,604г "+ 0,831г ') 492 реализовать последовательное корректирующее устройство в виде: а) импульсной ЯС-цепочки; б) линии задержек; в) программы на трехадресной управляющей ЦВМ.

Указание. При составлении программы учитывать сомножитель реального масштаба времени. 8.48. По передаточной функции СЦИ 1,565 (1 — 1,473г-г+ 0,256г-'+ 0.312а а — 0,094а"') Е (г! 1 — 0,944г — 0,34 г '+0,191г а+0,106г реализовать последовательное корректирующее устройство в виде: а) импульсной РС-цепочки; б) линии задержек; в) программы на трехадресной управляющей ЦВМ (см. указание к задаче 8.47). 8.49. По передаточной функции 97 (г) = — =* (7 (а) г 0,5107+ 0,4252г г — 0,1667г ' — 0,5914г г — 0,2279г а+ 0,0202г а+0,0516г г 1+0,5577а ' — 0,66 г г 0,879 г г 0,2561г +О,!361г а+0.0476г г реализовать последовательное корректирующее устройство в виде: а) импульсной 1гС-цепочки; б) линии задержек; в) программы на трехадресной управляющей ЦВМ (см.

указание к задаче 8.47). 8.50. По передаточной функции 97 ГП)~ а г(! — 2г г — 2г г) Е(г! (1 — г »1(1 — 0,9г г) (! — 2а ! реализовать последовательное корректирующее устройство в виде: а) импульсной ДС-цепочки; б) линии задержек; в) программы на трехадресной управляющей ЦВМ (см. указание к задаче 8.471: 8 51. По передаточной функции !»(г) г х(1 — ааа г! Х (г! (1 + а!~ + а,г-'1(1 — а- ) реализовать параллельное корректирующее устройство в виде: а) импульсной КС-цепочки; б) линии задержек; в) программы на трехадресной ЦВМ.

8.52. По передаточной функции Е(г) 0,0364+0,17а а+0,106а г СЦа) 11,786+ 1,376г г! (! — а Ч реализовать параллельное корректирующее устройство в виде: а) импульсной 1гС-цепочки; б) линии задержек; в) программы на трехадресной ЦВМ (см. указание к задаче 8.47). 8.53.

По передаточной функции Б'г (г) = — = 2450 (1 — 0,182г ' — 0,4933 '+ 0,02883 а+ 0,1123 ') (1 — г ') Е (г) реализовать последовательное корректирующее устройство в виде: а) линии задержек; б) программы на управляющей трехадресной ЦВМ (см.

указание к задаче 8.47). 8.54. Определить последовательное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. рис. 8.28, а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если (6» ~А(! г ) (Р' (') = . (т"„+ 1!(Т„+ 1> где й„= 2 с; Т, = 0,1 с; Т,= 0,05 с; Т = 0,2 с по заданной логарифмической амплитудной характеристике (рис. 8.33). 493 Решение. Определяем г-преобразование передаточной функпии неизменяемой части системы 0,156(г + 0,05) (г + 1,065) (г — 0(6-0,135)(г — 0,0185) ' После подстановки г = — получим !+в ! — в 0,19!5(в+!) (!/1,!05в+ 1) (1!31,769в — 1) в(1/0,762в+ 1) (1/0,964в+ 1) Логарифмическую амплитудную характеристику неизменяемой части 201я! 97, ((о) [ строим на рис.

8.33, а. Поднимаем характеристику неизменяемой части до уровня желаемой в области низких псевдочастот. Затем находим логарифмическую амплитудную характеристику корректирующего устройства 201я [ 97„((о) [ (рис. 8.33, б), с помощью которой получим 52,18 (1,312в+ 1) (в+ 1)г (2,5в+ В (1,037в+ 1) (0,905в+ 1) ' г — ! или, после подстановки со = —, г+1' 482,5666 — 65, 12гг 13,582г — 6,39866 — 0,408г —,005 Последнее выражение преобразуем к виду, удобному для составления разностного уравнения, т.

е. „7 Х (г) 35,54 — 0,4796-' и У(г> 1 — 0 476 6 — 0 036 з 0 00046-6 ' Вводя множитель г ', обеспечивающий выполнение программы коррекции на ЦВМ в реальном масштабе времени, получим Хр (г) 35,54г 6 — 0,479г з Ур (г) 1 — 0,47г 6 — 0,036- — О. 46- С помощью последнего выражения запишем разностное уравнение коррекции х (кТ) = 0,47х [(к — 1) Т) + 0,03х [(к — 2) Т) + + 0,0004х [(к — 3) Т) + 35,54и [(к — 1) Т) — 0,479 и (к — 2) Т[. Реализуем зто уравнение в виде рабочей программы одноадресной ЦВМ (табл. 8.9) в системе команд, которые приведены в приложении ХЧ1. Распределение памяти приведено в табл. 8.10. 8.55. Определить последовательное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см.рис.

8.28,а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если 0и= 50 с ', 1);=9 с '; свИ ее передаточная функция не- 48 изменяемой части и) 97 аи(1 — о 'г) Я 3 66(т,6+1) ° д где й„= 2 с ', Т, = 0,5 с; згд Т=05с. езд 52 41 7 ад 494 Рис. 8.83. Логарифмические амнлитуднесе караковристики дискретно-неаре рызно а системес рееули рованик з зависимости от нсеИонаснвтт (задана 8,54) Таблица 8.9 Симеон к команда <мнемоник> с к команда /миемокод5 № и/и № а/и Примечание Примечании Таблица 8.10 и/и Ячейки Содержимое Га и-"н аче,кв цамкти и/и Ячейки Содержимое ачейкн иамвти Содержи5 ячейки памяти № о/и 8.56. Определить последовательное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. рис.

8.28,а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если О' =24 се; 0; =54 с', Т=0,05 с; о",„(25%; /;"=-1,2 с, а передаточная функция неизменяемой части (~ е аТ) н(~) 55(т и+ В(т 5+ 0 1 где йв ом 2 с ', Т, = 0,35 с; Т, = 0,05 с. 8 57. Определить последовательное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. рис. 8.28, а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если передаточная функция неизменяемой части (1 и аТ) "Тн (З) = 5 (Т;+ 0 ГдЕ Аи = 4 а ', Тй = 0,5 С; Т = 0,2 С, ПО ЗадаННОй ЛОГарИфМИЧЕСКОй амплитудной характеристике разомкнутой системы ~ йг, (/о) ! (рис.

8.34, а). 495 -оу 484 Ст,дд со аае У аг гу -дд аде ьур ердр е Рис. 8.84. Заданные лоеарифмиееские амнлитудные хиракоьеристтси дис. кретно-ненрерыеных систем аетоматиеескоео рееулироеанин е еаеисимости от нсеедьнастоты 8Л8. Определить последовательное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. рнс. 8.28, а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если передаточная функция неизменяемой части а„(1 е-вг) еь (7 ее + 0 где й„= 10 с ь; Т, = 30 с; Т = 0,1 с, по заданной логарифмической амплитудной характеристике разомкнутой системы ~ йу, (/о) ~ (кривая ! на рис, 8.34, б).

8.59. Определить последовательное корректирующее устройство дискретно-непрерывной системы автоматического регулирования (см. 496 рие. 8.28, а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если передаточная функция неизменяемой части (! е ьг) И'я(а) з(г 0 где А„=!О с ', Тг = 100 с; Т = 0,1 с, по заданной логарифмической амплитудной характеристике разомкнутой системы ~ ИГ, (!и) ( (кривая 2 на рис. 8.34, б). 8.60.

Определить последовательное корректирующее устройство диекретно-непрерывной системы автоматического регулирования (см. рис. 8.28, а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если передаточная функция неизменяемой части (! -ьг) ~~ !г а+ 0 где й„= 8 о ', Т, = 100 с; Т = 0,1 е, по заданной логарифмической амплитудной характеристике разомкнутой системы ~ Иг, (! и) ~ (кривая 3 на рис. 8.34, б).

8.61. Определить параллельное корректирующее устройство дискретно- непрерывной системы автоматического регулирования (см. рис. 8.28, в) и реализовать его в виде программы одноадресной управляющей ЦВМ, если передаточная функция неизменяемой части где йа=0,2с; Т,=2,86с; Т,=0,77е; Т=0,2с; lг,=10, позаданной логарифмической амплитудной характеристике разомкнутой системы 1 Иг, ()п)1 (кривая ! на рис. 8.34, в).

8.62. Определить параллельное корректирующее устройство дискретно- непрерывной системы автоматического регулирования (см. рис. 2.28, а) и реализовать его в виде программы одноадресной управляющей ЦВМ, если передаточная функция неизменяемой части где йз = 0,313 с ', Т, = 2,86 с; Т, = 0,04 с; Т = 0,1 с; йг = 5, по заданной логарифмической амплитудной характеристике разомкнутой системы ) Иг,(!п)~ (кривая 2 на риз. 8.34, в). 8.63. Определить параллельное корректирующее устройство дискретяонепрерывной системы автоматического регулирования (см. рис.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее