Главная » Просмотр файлов » Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008)

Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 62

Файл №1185330 Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008).pdf) 62 страницаЕ. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330) страница 622020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 62)

ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı279‰Îfl x ≠ y (Ë ‡‚̇fl 0, Ë̇˜Â). í‡Í, ˜ÂÎÓ‚ÂÍ, ÊË‚Û˘ËÈ ‚ ÚӘ͠ı, ÍÓÚÓ˚È ıÓ˜ÂÚÔÓÒÂÚËÚ¸ ÍÓ„Ó-ÚÓ, ÊË‚Û˘Â„Ó ‚ ÚӘ͠y, Ò̇˜‡Î‡ Á‡ıÓ‰ËÚ ‚ f, ˜ÚÓ·˚ ÍÛÔËÚ¸ ˆ‚ÂÚ˚.Ç ÒÎÛ˜‡Â ÂÒÎË d ( x, f ) = || x − y ||, ‡ ÚӘ͇ f fl‚ÎflÂÚÒfl ̇˜‡ÎÓÏ ÍÓÓ‰Ë̇Ú, Ï˚ ÔÓÎÛ˜‡ÂÏÏÂÚËÍÛ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë.ÖÒÎË ËÏÂÂÚÒfl k > 1 ˆ‚ÂÚÓ˜Ì˚ı χ„‡ÁËÌÓ‚ f1 ,…, fk, ÚÓ ˜ÂÎÓ‚ÂÍ ÍÛÔËÚ ˆ‚ÂÚ˚ ‚ ·ÎËʇȯÂÏ Ï‡„‡ÁËÌÂ Ò ÏËÌËχθÌ˚Ï ÓÚÍÎÓÌÂÌËÂÏ ÓÚ Ò‚ÓÂ„Ó Ï‡¯ÛÚ‡, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‡Á΢Ì˚ÏË ÚӘ͇ÏË x, y ‡‚ÌÓ min l ≤ i ≤ k ( d ( x, fi ) + d ( fi , y)).åÂÚË͇ ˝Í‡Ì‡ ‡‰‡‡ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n ) ÏÂÚËÍÓÈ ˝Í‡Ì‡ ‡‰‡‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n), ÓÔ‰ÂÎÂÌ̇fl ͇Ímin{1,|| x − y ||}.åÂÚË͇ ÍÓ‚‡ êËÍχ̇ÑÎfl ˜ËÒ· α ∈ (0, 1) ÏÂÚËÍÓÈ ÍÓ‚‡ êËÍχ̇ fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl ͇Íx1 − y1 + x 2 − y2α.ùÚÓ fl‚ÎflÂÚÒfl ÒÎÛ˜‡ÂÏ n = 2 Ô‡‡·Ó΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl („Î. 6; ÒÏ.

Ú‡Ï Ê ‰Û„ËÂÏÂÚËÍË Ì‡ n, n ≥ 2).åÂÚË͇ ÅÛ‡„Ó–à‚‡ÌÓ‚‡å Â Ú  Ë Í Ó È Å Û  ‡ „  Ó – à ‚ ‡ Ì Ó ‚ ‡ ([BuIv01]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ͇Í|| x ||2 − || y ||2 + min{|| x ||2 ⋅ ||| y ||2 } ⋅ ∠( x, y),„‰Â ∠(x, y) – Û„ÓÎ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û Ë || ⋅ || – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 . ëÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ 2 ‡‚̇ || x ||2 − || y ||2 , ÂÒÎË ∠(x, y) = 0, Ë ‡‚̇|| x ||2 − || y ||2 , Ë̇˜Â.åÂÚË͇ 2n-Û„ÓθÌË͇ÑÎfl ˆÂÌÚ‡Î¸ÌÓ ÒËÏÏÂÚ˘ÌÓ„Ó Ô‡‚ËθÌÓ„Ó 2n-Û„ÓθÌË͇ K ̇ ÔÎÓÒÍÓÒÚË ÏÂÚËÍÓÈ 2n-Û„ÓθÌË͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x,y ∈ 2Í‡Í Ì‡ËÍ‡Ú˜‡È¯‡fl ‚ÍÎˉӂ‡ ‰ÎË̇ ÎÓχÌÓÈ ÎËÌËË ÓÚ ı Í Û, ͇ʉÓ ËÁ Á‚Â̸ ÍÓÚÓÓÈ Ô‡‡ÎÎÂθ̇ ÌÂÍÓÚÓÓÏÛ ËÁ ·Â ÏÌÓ„ÓÛ„ÓθÌË͇ ä.ÖÒÎË ä ÂÒÚ¸ ÔflÏÓÛ„ÓθÌËÍ Ò ‚Â¯Ë̇ÏË {(±1, ±1)}, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛå‡Ìı˝ÚÚÂ̇.

åÂÚËÍÛ å‡Ìı˝ÚÚÂ̇ Ú‡ÍÊ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ åËÌÍÓ‚ÒÍÓ„Ó Ò Â‰ËÌ˘Ì˚Ï ¯‡ÓÏ ‚ ‚ˉ ·ËÎΡÌÚ‡, Ú.Â. Í‚‡‰‡Ú‡ Ò ‚Â¯Ë̇ÏË{(1,0(0,1), (–1,0),(0,–1)}.åÂÚË͇ ˆÂÌÚ‡Î¸ÌÓ„Ó Ô‡͇åÂÚËÍÓÈ ˆÂÌÚ‡Î¸ÌÓ„Ó Ô‡͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇ ̇ËÍ‡Ú˜‡È¯Â„Ó l1 -ÔÛÚË (ÔÛÚË å‡Ìı˝ÚÚÂ̇) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, x, y ∈ 2 ÔË̇΢ËË ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ÁÓÌ, ˜ÂÂÁ ÍÓÚÓ˚ ÔÓıÓ‰flÚ Í‡Ú˜‡È¯Ë ‚ÍÎˉӂ˚ÔÛÚË (̇ÔËÏÂ, ñÂÌÚ‡Î¸Ì˚È Ô‡Í ‚ å‡Ìı˝ÚÚÂÌÂ).ê‡ÒÒÚÓflÌË ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈèÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, Ô‰ÒÚ‡‚Îfl˛˘Â ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÔÂÔflÚÒÚ‚ËÈ,ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl Ó‰ÌÓ‚ÂÏÂÌÌÓ ÌÂÔÓÁ‡˜Ì˚ÏË Ë ÌÂÔÓıÓ‰ËÏ˚ÏË.280ó‡ÒÚ¸ V.

ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂê‡ÒÒÚÓflÌËÂÏ ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ (ËÎË ‡ÒÒÚÓflÌËÂÏ ÌÓÒËθ˘ËÍÓ‚ ÔˇÌËÌÓ, ÏÂÚËÍÓÈ Í‡Ú˜‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â 2\{}, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ 2\{} Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ËÁ‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÔÛÚÂÈ, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û Ë Ì ÔÂÂÒÂ͇˛˘Ëı ÔÂÔflÚÒÚ‚Ëfl Oi\∂Oi (ÔÛÚ¸ ÏÓÊÂÚ ÔÓıÓ‰ËÚ¸ ˜ÂÂÁ ÚÓ˜ÍË Ì‡ „‡Ìˈ ∂Oi ÔÂÔflÚÒÚ‚Ëfl∂Oi), i = 1,…,m.èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏËèÛÒÚ¸ = {O1,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÍ˚Ú˚ıÏÌÓ„ÓÛ„ÓθÌ˚ı ·‡¸ÂÓ‚ ̇ 2. èflÏÓÛ„ÓθÌ˚È ÔÛÚ¸ (ËÎË ÔÛÚ¸ å‡Ìı˝ÚÚÂ̇)Px y ÓÚ x Í y ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ „ÓËÁÓÌڇθÌ˚ı Ë ‚ÂÚË͇θÌ˚ı ÓÚÂÁÍӂ̇ ÔÎÓÒÍÓÒÚË, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û.

èÛÚ¸ Pxy ̇Á˚‚‡ÂÚÒfl ÓÒÛ˘ÒÚ‚ÎflÂÏ˚Ï ÂÒÎËm Pxy ∩  Bi  = 0/ . i =1 èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË (ËÎË ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÔË̇΢ËË ·‡¸ÂÓ‚) ÂÒÚ¸ ÏÂÚË͇ ̇ 2\{}, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ 2\{}Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÓÒÛ˘ÂÒÚ‚ËÏÓ„Ó ÔflÏÓÛ„ÓθÌÓ„Ó ÔÛÚË ÓÚ ı Í Û.èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ ÏÂÚËÍË å‡Ìı˝ÚÚÂÌ‡Ë Ó·˚˜ÌÓ ‡ÒÒχÚË‚‡ÂÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â {q1 , …, qr } ⊂ 2 ËÁ n ÚÓ˜ÂÍ "ÓÚÔ‡‚ËÚÂθÔÓÎÛ˜‡ÚÂθ": Á‡‰‡˜‡ ̇ıÓʉÂÌËfl ÔÛÚÂÈ Ú‡ÍÓ„Ó ÚËÔ‡ ‚ÓÁÌË͇ÂÚ, ̇ÔËÏÂ, ÔË Ó„‡ÌËÁ‡ˆËË Ú‡ÌÒÔÓÚÌ˚ı ÔÂ‚ÓÁÓÍ ‚ „ÓÓ‰ÒÍËı ÛÒÎÓ‚Ëflı, ‡ Ú‡ÍÊ ÔË Ô·ÌËÓ‚ÍÂÁ‡‚Ó‰Ó‚ Ë ÒÓÓÛÊÂÌËÈ (ÒÏ., ̇ÔËÏÂ, [LaLi81]).Uê‡ÒÒÚÓflÌË ҂flÁËèÛÒÚ¸ P ⊂ 2 – ÏÌÓ„ÓÛ„Óθ̇fl ӷ·ÒÚ¸ (̇ n ‚Â¯Ë̇ı Ò h ‰˚‡ÏË), Ú.Â.

Á‡ÏÍÌÛÚ‡fl ÏÌÓ„ÓÒ‚flÁ̇fl ӷ·ÒÚ¸, „‡Ìˈ‡ ÍÓÚÓÓÈ – Ó·˙‰ËÌÂÌË n ÎËÌÂÈÌ˚ı ÓÚÂÁÍÓ‚,Ó·‡ÁÛ˛˘Ëı n + 1 Á‡ÏÍÌÛÚ˚ı ÏÌÓ„ÓÛ„ÓθÌ˚ı ˆËÍÎÓ‚. ê‡ÒÒÚÓflÌËÂÏ Ò‚flÁË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ê, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ P Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ·Â ÏÌÓ„ÓÛ„ÓθÌÓ„Ó ÔÛÚË ÓÚ ı Í Û ‚ Ô‰Â·ı ÏÌÓ„ÓÛ„ÓθÌÓÈ Ó·Î‡ÒÚË ê.ÖÒÎË ‡Á¯ÂÌ˚ ÚÓθÍÓ ÔflÏÓÛ„ÓθÌ˚ ÔÛÚË, Ï˚ ÔÓÎÛ˜‡ÂÏ ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ҂flÁË. ÖÒÎË ÔÛÚË ë-ÓËÂÌÚËÓ‚‡Ì˚ (Ú.Â. ͇ʉÓ ·Ó Ô‡‡ÎÎÂθÌÓ Ó‰ÌÓÏÛ ËÁ ·Â ÏÌÓÊÂÒÚ‚‡ ë Ò Á‡‰‡ÌÌÓÈ ÓËÂÌÚ‡ˆËÂÈ), ÚÓ Ï˚ ËÏÂÂÏ ë-ÓËÂÌÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ҂flÁË.ê‡ÒÒÚÓflÌËfl Ô·ÌËÓ‚ÍË ÒÓÓÛÊÂÌËÈè·ÌËӂ͇ – ˝ÚÓ ‡Á·ËÂÌË ÔflÏÓÛ„ÓθÌÓÈ ÔÎÓÒÍÓÈ Ó·Î‡ÒÚË Ì‡ ÔflÏÓÛ„ÓθÌËÍË ÏÂ̸¯Â„Ó ‡ÁÏÂ‡, ̇Á˚‚‡ÂÏ˚ ÓÚ‰ÂÎÂÌËflÏË, ÎËÌËflÏË, ÔÓıÓ‰fl˘ËÏËÔ‡‡ÎÎÂθÌÓ ÒÚÓÓÌ‡Ï ËÒıÓ‰ÌÓ„Ó ÔflÏÓÛ„ÓθÌË͇.

ÇÒ ‚ÌÛÚÂÌÌË ‚Â¯ËÌ˚‰ÓÎÊÌ˚ ·˚Ú¸ ÚÂı‚‡ÎÂÌÚÌ˚ÏË, ‡ ÌÂÍÓÚÓ˚ ËÁ ÌËı, ÔÓ Í‡ÈÌÂÈ ÏÂ Ӊ̇ ̇ „‡ÌËˆÂ Í‡Ê‰Ó„Ó ÓÚ‰ÂÎÂÌËfl, fl‚Îfl˛ÚÒfl ‰‚ÂflÏË, Ú.Â. ÏÂÒÚ‡ÏË ‚ıÓ‰‡-‚˚ıÓ‰‡. èÓ·ÎÂχÁ‡Íβ˜‡ÂÚÒfl ‚ ÒÓÁ‰‡ÌËË ÔÓ‰ıÓ‰fl˘Â„Ó Ô‰ÒÚ‡‚ÎÂÌËfl Ó ‡ÒÒÚÓflÌËË d(x, y) ÏÂÊ‰Û ÓÚ‰ÂÎÂÌËflÏË ı Ë Û, ÍÓÚÓÓ ÏËÌËÏËÁËÓ‚‡ÎÓ ·˚ ÙÛÌÍˆË˛ ˆÂÌ˚F( x, y)d ( x, y), „‰Â∑x, yF(x, y) – ÌÂÍËÈ Ï‡ÚÂˇθÌ˚È ÔÓÚÓÍ ÏÂÊ‰Û ı Ë Û. éÒÌÓ‚Ì˚ÏË ËÒÔÓθÁÛÂÏ˚ÏË ‰Îfl˝ÚÓ„Ó ‡ÒÒÚÓflÌËflÏË fl‚Îfl˛ÚÒfl:– ‡ÒÒÚÓflÌË ˆÂÌÚÓˉ‡, Ú.Â. Í‡Ú˜‡È¯Â ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÎË ‡ÒÒÚÓflÌËÂå‡Ìı˝ÚÚÂ̇ ÏÂÊ‰Û ˆÂÌÚÓˉ‡ÏË (ÔÂÂÒ˜ÂÌËfl ‰Ë‡„Ó̇ÎÂÈ) ı Ë Û;– ‡ÒÒÚÓflÌË ÔÂËÏÂÚ‡, Ú.Â.

Í‡Ú˜‡È¯Â ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÏÂʉۉ‚ÂflÏË ı Ë Û, ÔÓıÓ‰fl˘Â ÚÓθÍÓ ‚‰Óθ ÒÚÂÌ, Ú.Â. ÔÂËÏÂÚÓ‚ ÓÚ‰ÂÎÂÌËÈ.281É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflıåÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚËåÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË (ËÎË ÏÂÚË͇ ÒÂÚË) – ÏÂÚË͇ ̇ 2 (ËÎË Ì‡ ÔÓ‰ÏÌÓÊÂÒÚ‚Â 2) ÔË Ì‡Î˘ËË ‰‡ÌÌÓÈ ÒÂÚË, Ú.Â. ÔÎÓÒÍÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ G(V, E).ÑÎfl β·˚ı x, y ∈ 2 ˝ÚÓ fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ‚ ÔË̇΢ËË ÒÂÚË G, Ú.Â. ÔÛÚË, χÍÒËχθÌÓ ÒÓÍ‡˘‡˛˘Â„Ó ‚ÂÏfl ÔÂÂÏ¢ÂÌËfl ÏÂʉÛı Ë Û. èÓÒΠÔÓÎÛ˜ÂÌËfl ‰ÓÒÚÛÔ‡ ‚ ÒÂÚ¸ G ‰‡Î ÏÓÊÌÓ ÔÂÂÏ¢‡Ú¸Òfl Ò ÌÂÍÓÚÓÓÈÒÍÓÓÒÚ¸˛ v > 1 ‚‰Óθ  ·Â. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Á‡‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ÔÎÓÒÍÓÒÚË (̇ÔËÏÂ, ‚ÍÎˉӂÓÈÏÂÚËÍË ËÎË ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇).åÂÚË͇ ‚ÓÁ‰Û¯Ì˚ı ÔÂ‚ÓÁÓÍ ÂÒÚ¸ ÏÂÚËÍÓÈ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2 ÔË Ì‡Î˘ËË ÒÂÚË ‡˝ÓÔÓÚÓ‚, Ú.Â.

ÔÎÓÒÍÓ„Ó „‡Ù‡ G(V, E) ̇ n ‚Â¯Ë̇ı (‡˝ÓÔÓÚ‡ı) ÒÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË ·Â (w e)e∈E (‚ÂÏfl ÔÓÎÂÚ‡). ÇÓÈÚË Ë ‚˚ÈÚË ËÁ „‡Ù‡ÏÓÊÌÓ ÚÓθÍÓ ˜ÂÂÁ ‡˝ÓÔÓÚ˚. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‰‚ËÊÂÌË ̇‡‚ÚÓÏÓ·ËΠÔÓ ‚ÂÏÂÌË ‡‚ÌÓ ÏÂÚËÍ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl dE, ÚÓ„‰‡ Í‡Í ÔÓÎÂÚ‚‰Óθ ·‡ e = uv „‡Ù‡ G Á‡ÈÏÂÚ ‚ÂÏfl we < d E (u, v). Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â, ÍÓ„‰‡ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÂ‚ÓÁ͇ ÔÓ ‚ÓÁ‰ÛıÛ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË a, b ∈ 2, ‡ÒÒÚÓflÌËÂÏÂÊ‰Û ı Ë Û ‡‚ÌÓmin{d E ( x, y), d E ( x, a) + w + d E (b, y), d E ( x, b) + w + d E ( a, y)},„‰Â w < d2 (a, b) ÂÒÚ¸ ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÓÎÂÚ‡ ÏÂÊ‰Û a Ë b.åÂÚË͇ „ÓÓ‰‡ – ÏÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2 ÔË Ì‡Î˘ËË ÒÂÚË Ó·˘ÂÒÚ‚ÂÌÌÓ„Ó Ú‡ÌÒÔÓÚ‡, Ú.Â.

ÔÎÓÒÍÓ„Ó „‡Ù‡ G Ò „ÓËÁÓÌڇθÌ˚ÏË ËÎË ‚ÂÚË͇θÌ˚ÏË ·‡ÏË. G ÏÓÊÂÚ ÒÓÒÚÓflÚ¸ ËÁ ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ Ë ÒÓ‰ÂʇڸˆËÍÎ˚. ä‡Ê‰˚È ÏÓÊÂÚ ÔÓÔ‡ÒÚ¸ ‚ G ‚ β·ÓÈ ÚÓ˜ÍÂ, ·Û‰¸ ÚÓ ‚Â¯Ë̇ ËÎË ·Ó(‚ÓÁÏÓÊÌÓ Ì‡Á̇˜ËÚ¸ Ú‡ÍÊÂ Ë ÒÚÓ„Ó ÙËÍÒËÓ‚‡ÌÌ˚ ÚÓ˜ÍË ‚ıÓ‰‡). ÇÌÛÚË G‰‚ËÊÂÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1 ‚ Ó‰ÌÓÏ ËÁ ‰ÓÒÚÛÔÌ˚ı̇Ô‡‚ÎÂÌËÈ. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇ (‚ ̇¯ÂÏ ÒÎÛ˜‡Â ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl ÍÛÔÌ˚ÈÒÓ‚ÂÏÂÌÌ˚È „ÓÓ‰ Ò ÔflÏÓÛ„ÓθÌÓÈ Ô·ÌËÓ‚ÍÓÈ ÛÎˈ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ Ò‚Â–˛„Ë ‚ÓÒÚÓÍ–Á‡Ô‡‰).åÂÚË͇ ÏÂÚÓ – ÏÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ‚‡ˇÌÚÓÏÏÂÚËÍË „ÓÓ‰‡: ÏÂÚÓ (‚ ‚ˉ ÎËÌËË Ì‡ ÔÎÓÒÍÓÒÚË) ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÒÓÍ‡˘ÂÌËflıÓ‰¸·˚ Ô¯ÍÓÏ ‚ Ô‰Â·ı „ÓÓ‰ÒÍÓÈ ÒÂÚÍË ÍÓÓ‰Ë̇Ú.èÂËӉ˘ÂÒ͇fl ÏÂÚË͇åÂÚË͇ d ̇ 2 ̇Á˚‚‡ÂÚÒfl ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏ˚ı ‚ÂÍÚÓ‡ v Ë u, Ú‡ÍË ˜ÚÓ ÔÂÂÌÓÒ ÔÓ Î˛·ÓÏÛ ‚ÂÍÚÓÛ w = mv + nu,m,n ∈ ÒÓı‡ÌflÂÚ ‡ÒÒÚÓflÌËfl, Ú.Â.

d ( x, y) = d ( x + w, y + w ) ‰Îfl β·˚ı x, y ∈ 2 (ÒÏ. àÌ‚‡ˇÌÚ̇fl ÏÂÚË͇ ÔÂÂÌÓÒ‡, „Î. 5)è‡‚Ëθ̇fl ÏÂÚË͇åÂÚË͇ d ̇ 2 ̇Á˚‚‡ÂÚÒfl Ô‡‚ËθÌÓÈ, ÂÒÎË Ó·Î‡‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:1) d ÔÓÓʉ‡ÂÚ Â‚ÍÎË‰Ó‚Û ÚÓÔÓÎӄ˲;2) d-ÓÍÛÊÌÓÒÚË Ó„‡Ì˘ÂÌ˚ ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË;3) ÂÒÎË x, y ∈ 2 Ë x ≠ y, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚӘ͇ z, z ≠ x, z ≠ y, ڇ͇fl ˜ÚÓ ‚˚ÔÓÎÌflÂÚÒfl‡‚ÂÌÒÚ‚Ó d ( x, y) = d ( x, z ) + d ( z, y);4) ÂÒÎË x, y ∈ 2, x p y („‰Â p ÙËÍÒËÓ‚‡ÌÌ˚È ÔÓfl‰ÓÍ Ì‡ 2, ̇ÔËÏÂ, ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍËÈ ÔÓfl‰ÓÍ), C( x, y) = {z ∈ 2 : d ( x, z ) ≤ d ( y, z )},D( x, y) = {z ∈ 2 : d ( x,282ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂz ) < d ( y, z )} Ë D( x, y) – Á‡Ï˚͇ÌË D(x,y), ÚÓ J ( x, y) = C( x, y) ∩ D( x, y) ÂÒÚ¸ ÍË‚‡fl,„ÓÏÂÓÏÓÙ̇fl (0,1).

èÂÂÒ˜ÂÌË ‰‚Ûı Ú‡ÍËı ÍË‚˚ı ÒÓÒÚÓËÚ ËÁ ÍÓ̘ÌÓ„Ó ˜ËÒ·ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ.ä‡Ê‰‡fl ÏÂÚË͇ ÌÓÏ˚ ËÏÂÂÚ Ò‚ÓÈÒÚ‚‡ 1., 2. Ë 3. ë‚ÓÈÒÚ‚Ó 2. ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÏÂÚË͇ d fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ ‚ ·ÂÒÍÓ̘ÌÓÒÚË ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË.ë‚ÓÈÒÚ‚ÓÏ 4. Ó·ÂÒÔ˜˂‡ÂÚÒfl, ˜ÚÓ „‡Ìˈ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ófl‚Îfl˛ÚÒfl ÍË‚˚ÏË Ë ˜ÚÓ Ì ÒÎ˯ÍÓÏ ÏÌÓ„Ó ÔÂÂÒ˜ÂÌËÈ ÒÛ˘ÂÒÚ‚Ó‚ÛÂÚ ‚ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË ËÎË ‚ ·ÂÒÍÓ̘ÌÓÒÚË. è‡‚Ëθ̇fl ÏÂÚË͇ d ËÏÂÂÚ Ô‡‚ËθÌÛ˛ ‰Ë‡„‡ÏÏÛ ÇÓÓÌÓ„Ó: ‚ ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó V ( P, d , 2 ) („‰Â P = {p1 , …, pk }, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó „ÂÌÂ‡ÚÓÓ‚) ͇ʉ‡fl ӷ·ÒÚ¸ ÇÓÓÌÓ„Ó V(pi) fl‚ÎflÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ‡ ÒËÒÚÂχ {V ( pi ), …, V ( pk )} Ó·‡ÁÛÂÚ ‡Á·ËÂÌËÂÔÎÓÒÍÓÒÚË.䂇ÁË‡ÒÒÚÓflÌËfl ÍÓÌÚ‡Íڇ䂇ÁË‡ÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ÒÎÂ‰Û˛˘Ë ‚‡ˇÌÚ˚ ‚˚ÔÛÍÎÓÈÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl (ÒÏ. „Î. 1), ÓÔ‰ÂÎÂÌÌÓÈ Ì‡ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n).ÑÎfl ÏÌÓÊÂÒÚ‚‡ B ⊂ 2 Í‚‡ÁË‡ÒÒÚÓflÌË ÔÂ‚Ó„Ó ÍÓÌÚ‡ÍÚ‡ dB ÓÔ‰ÂÎflÂÚÒfl ͇Íinf{α > 0 : y − x ∈ α B}(ÒÏ.

ê‡ÒÒÚÓflÌËfl ÒÂÚË ÒÂÌÒÓÌ˚ı ‰‡Ú˜ËÍÓ‚, „Î. 28).ÅÓΠÚÓ„Ó, ‰Îfl ÚÓ˜ÍË b ∈ B Ë ÏÌÓÊÂÒÚ‚‡ A ⊂ 2 Í‚‡ÁË‡ÒÒÚÓflÌËÂÏ ÎËÌÂÈÌÓ„ÓÍÓÌÚ‡ÍÚ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, ÓÔ‰ÂÎÂÌÌÓ ͇Ídb ( x, A) = inf{α ≥ 0 : αb + x ∈ A}.䂇ÁË‡ÒÒÚÓflÌË ÔÂÂı‚‡Ú‡ ‰Îfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ç ÓÔ‰ÂÎflÂÚÒfl ͇Ídb ( x , y )∑b ∈B| B|.чθÌÓÒÚ¸ ‡ÒÔÓÁ̇‚‡ÌËfl ‡‰‡‡Ñ‡Î¸ÌÓÒÚ¸ ‡ÒÔÓÁ̇‚‡ÌËfl ‡‰‡‡ – ‡ÒÒÚÓflÌË ̇ 2, ÓÔ‰ÂÎÂÌÌÓ ͇Í| ρ x − ρ y + θ xy |,ÂÒÎË x, y ∈ 2 \ {0}, Ë Í‡Í| ρ x − ρ y |,ÂÒÎË x = 0 ËÎË y = 0, „‰Â ‰Îfl ͇ʉÓÈ "ÎÓ͇ˆËË" x ∈ 2 ρ x – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ıÓÚ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú, Ë ‰Îfl β·˚ı x, y ∈ 2 \{0} θ xy – Û„ÓÎ ÏÂÊ‰Û ÌËÏË (‚ ‡‰Ë‡Ì‡ı)˛èÓÎÛÏÂÚË͇ ùÂÌÙfiıÚ‡–ï‡ÛÒÎÂ‡èÛÒÚ¸ S – ·Û‰ÂÚ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó 2, Ú‡Í ˜ÚÓ x1 ≥ x 2 − 1 ≥ 0 ‰Îfl β·Ó„Ó x ∈ S.èÓÎÛÏÂÚË͇ ùÂÌÙfiıÚ‡–ï‡ÛÒÎÂ‡ ([EhHa88]) ̇ S ÓÔ‰ÂÎflÂÚÒfl ͇Í x  y log 2   1 + 1  1   .  x 2 + 1   y2É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı283íÓÓˉ‡Î¸Ì‡fl ÏÂÚË͇íÓÓˉ‡Î¸Ì‡fl ÏÂÚË͇ – ÏÂÚË͇ ̇ ÚÂΠT = [0, 1) × [0, 1) = {x ∈ 2 : 0 ≤ x1 , x 2 < 1},ÓÔ‰ÂÎÂÌ̇fl ͇Ít12 + t22‰Îfl β·˚ı x, y ∈ 2, „‰Â ti = min{| xi − yi |, | xi − yi + 1 |} ‰Îfl i = 1,2 (ÒÏ.

Характеристики

Тип файла
PDF-файл
Размер
3,34 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее