Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 59
Текст из файла (страница 59)
ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ17.4. äéêêÖãüñàéççõÖ èéÑêéÅçéëíà à êÄëëíéüçàüäÓ‚‡Ë‡ˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸äÓ‚‡Ë‡ˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í∑( xi − x )( yi − y ) ∑ xi yi=− x ⋅ y.nnäÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ (ËÎË ÍÓÂÎflˆËfl èËÒÓ̇, ËÎË ÎËÌÂÈÌ˚È ÍÓ˝ÙÙˈËÂÌÚ ÍÓÂÎflˆËË ÔÓ Òϯ‡ÌÌ˚Ï ÏÓÏÂÌÚ‡Ï èËÒÓ̇) s – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n,ÓÔ‰ÂÎÂÌ̇fl ͇Í∑( xi − x )( yi − y )( ∑( x j − x )2 )( ∑( y j − y )2 ).çÂÒıÓ‰ÒÚ‚‡ 1 – s Ë 1 – s2 ̇Á˚‚‡˛ÚÒfl ÍÓÂÎflˆËÓÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ èËÒÓ̇ ËÍ‚‡‰‡ÚÓÏ ‡ÒÒÚÓflÌËfl èËÒÓ̇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
ÅÓΠÚÓ„Ó,2(1 − s) =∑xi − x− ∑( x − x ) 2j∑( y j − y )2 yi − yfl‚ÎflÂÚÒfl ÌÓχÎËÁ‡ˆËÂÈ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl (ÒÏ. ÓÚ΢‡˛˘ÂÂÒfl ÌÓÏËÓ‚‡ÌÌÓÂl2 -‡ÒÒÚÓflÌË ‚ ‰‡ÌÌÓÈ „·‚Â).〈 x, y 〉ÑÎfl ÒÎÛ˜‡fl x = y = 0 ÍÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ÔËÌËχÂÚ ‚ˉ.|| x ||2 || y ||2èÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡èÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ é˜ËÌË, Û„ÎÓ‚‡fl ÔÓ‰Ó·ÌÓÒÚ¸, ÌÓÏËÓ‚‡ÌÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ) ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í〈 x, y 〉= cos φ,|| x ||2 ⋅ || y ||2„‰Â φ – Û„ÓÎ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û. ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ| X ∩Y || X |⋅|Y |Ë Ì‡Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ é˜Ë‡Ë-éÚÒÛÍË.Ç „ÛÔÔËÓ‚Í Á‡ÔËÒÂÈ ÔÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ ̇Á˚‚‡ÂÚÒfl TF-IDF (ÒÓ͇˘ÂÌÌÓ Óڇ̄ÎËÈÒÍËı ÚÂÏËÌÓ‚ ó‡ÒÚÓÚ‡ – é·‡Ú̇fl ó‡ÒÚÓÚ‡ ÑÓÍÛÏÂÌÚ‡).ê‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 – cos φ.ì„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ì„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ ̇ n – Û„ÓÎ (ËÁÏÂÂÌÌ˚È ‚ ‡‰Ë‡Ì‡ı) ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏËı Ë Û:arccos〈 x, y 〉.|| x ||2 ⋅ || y ||2265É·‚‡ 17.
ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ıê‡ÒÒÚÓflÌË éÎÓ˜Ëê‡ÒÒÚÓflÌË éÎÓ˜Ë (ËÎË ıÓ‰Ó‚Ó ‡ÒÒÚÓflÌËÂ) – ‡ÒÒÚÓflÌË ̇ n , ÓÔ‰ÂÎflÂÏÓ ͇Í〈 x, y 〉21 −.||||||||x⋅y22éÚÌÓ¯ÂÌË ÔÓ‰Ó·ÌÓÒÚËéÚÌÓ¯ÂÌË ÔÓ‰Ó·ÌÓÒÚË (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸˛ äÓıÓÌÂ̇) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í〈 x, y 〉.〈 x, y 〉+ || x − y ||22ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ.èÓ‰Ó·ÌÓÒÚ¸ åÓËÒËÚ˚–ïÓ̇èÓ‰Ó·ÌÓÒÚ¸ åÓËÒËÚ˚–ïÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í|| x||222〈 x, y 〉.yx⋅ + || y ||22 ⋅xyê‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl ëÔËÏ‡Ì‡Ç ÒÎÛ˜‡Â, ÍÓ„‰‡ ‚ÂÍÚÓ˚ x, y ∈ n fl‚Îfl˛ÚÒfl ‡ÌÊËÓ‚‡ÌËflÏË (ËÎË ÔÂÂÒÚ‡Ìӂ͇ÏË), Ú.Â. ÍÓÏÔÓÌÂÌÚ˚ Í‡Ê‰Ó„Ó ËÁ ÌËı – ‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,..., n}, Ï˚n +1ËÏÂÂÏ x = y =. ÑÎfl Ú‡ÍËı Ó‰Ë̇θÌ˚ı ‰‡ÌÌ˚ı ÍÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸2ÔËÌËχÂÚ ‚ˉ1−6∑( xi − yi )2 .n(n 2 − 1)ùÚÓ – ρ ‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl ëÔËχ̇.
é̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ρ-ÏÂÚËÍÓÈëÔËχ̇, ÌÓ Ì fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ. ρ ‡ÒÒÚÓflÌË ëÔËÏÂ̇ – ‚ÍÎˉӂ‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı. å‡Ò¯Ú‡·Ì‡fl ÎËÌÂÈ͇ ëÔËχ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í1−3∑ | xi − yi | .n2 − 1ùÚÓ l1 -‚ÂÒËfl ‡Ì„Ó‚ÓÈ ÍÓÂÎflˆËË ëÔËχ̇. ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍËëÔËχ̇ fl‚ÎflÂÚÒfl l1 -ÏÂÚËÍÓÈ Ì‡ ÔÂÂÒÚ‡Ìӂ͇ı.ÑÛ„ÓÈ ÍÓÂÎflˆËÓÌÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛ ‰Îfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ fl‚ÎflÂÚÒfl τ ‡Ì„Ó‚‡flÍÓÂÎflˆËfl äẨ‡Î·, ̇Á˚‚‡Âχfl Ú‡ÍÊ τ ÏÂÚËÍÓÈ äẨ‡Î· (‡ÒÒÚÓflÌËÂÏ ÌÂfl‚ÎflÂÚÒfl), ÍÓÚÓ‡fl ÓÔ‰ÂÎflÂÚÒfl ͇Í2 ∑1≤ j < j ≤ n sign( xi − x j )sign( yi − y j )n(n − 1).τ ‡ÒÒÚÓflÌË äẨ‡Î· ̇ ÔÂÂÒÚ‡Ìӂ͇ı ÓÔ‰ÂÎflÂÚÒfl ͇Í| {(i, j ) : 1 ≤ i < j ≤ n, ( xi − x j )( yi − y j ) < 0} | .266ó‡ÒÚ¸ IV.
ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂê‡ÒÒÚÓflÌË äÛ͇ê‡ÒÒÚÓflÌËÂÏ äÛ͇ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n , ‰‡˛˘Â ÒÚ‡ÚËÒÚ˘ÂÒÍÛ˛ ÓˆÂÌÍÛÚÓ„Ó, ̇ÒÍÓθÍÓ ÒËθÌÓ ÌÂÍÓ i- ̇·Î˛‰ÂÌË ÏÓÊÂÚ ÔÓ‚ÎËflÚ¸ ̇ ÓˆÂÌÍË Â„ÂÒÒËË.éÌÓ fl‚ÎflÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï Í‚‡‰‡ÚÓÏ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‡Ò˜ÂÚÌ˚ÏËÔ‡‡ÏÂÚ‡ÏË Â„ÂÒÒËÓÌÌ˚ı ÏÓ‰ÂÎÂÈ, ÔÓÒÚÓÂÌÌ˚ı ̇ ÓÒÌÓ‚Â ‚ÒÂı ‰‡ÌÌ˚ı Ë ‰‡ÌÌ˚ı ·ÂÁ Û˜ÂÚ‡ i-„Ó Ì‡·Î˛‰ÂÌËfl.éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË Ú‡ÍÓ„Ó Ó‰‡, ÔËÏÂÌflÂÏ˚ÏË ‚ „ÂÒÒË‚ÌÓÏ ‡Ì‡ÎËÁ‰Îfl ‚˚fl‚ÎÂÌËfl ̇˷ÓΠ‚ÎËflÚÂθÌ˚ı ̇·Î˛‰ÂÌËÈ, fl‚Îfl˛ÚÒfl DFITS ‡ÒÒÚÓflÌËÂ,‡ÒÒÚÓflÌËÂ Ç˝Î¯‡ Ë ‡ÒÒÚÓflÌË Ë.凯ËÌÌÓ ӷۘÂÌË ̇ ·‡Á ‡ÒÒÚÓflÌËÈÑÎfl ÏÌÓ„Ëı Ô‡ÍÚ˘ÂÒÍËı ÔËÎÓÊÂÌËÈ (ÌÂÈÓÌÌ˚ı ÒÂÚÂÈ, ËÌÙÓχˆËÓÌÌ˚ıÒÂÚÂÈ Ë Ú.Ô.), ı‡‡ÍÚÂÌ˚ÏË ÔËÁ͇̇ÏË ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÌÂÔÓÎÌÓÚ‡ ‰‡ÌÌ˚ı, ‡Ú‡ÍÊ ÌÂÔÂ˚‚ÌÓÒÚ¸ Ë ÌÓÏË̇θÌÓÒÚ¸ ‡ÚË·ÛÚÓ‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÎÂ‰Û˛˘ËÂÁ‡‰‡˜Ë.
ÑÎfl Ú × (n + 1) χÚˈ˚ ((xij)),  ÒÚÓ͇ (xi0, xi1,..., xin) Ó·ÓÁ̇˜‡ÂÚ ‚ıÓ‰ÌÓÈ‚ÂÍÚÓ xi = (x i1,..., x in) Ò ‚˚ıÓ‰ÌÓÈ ÏÂÚÍÓÈ xi0; ÏÌÓÊÂÒÚ‚Ó ËÁ m ‚ıÓ‰Ì˚ı ‚ÂÍÚÓÓ‚Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÚÂÌËÓ‚Ó˜ÌÓ ÏÌÓÊÂÒÚ‚Ó. ÑÎfl β·Ó„Ó ÌÓ‚Ó„Ó ‚ıÓ‰ÌÓ„Ó‚ÂÍÚÓ‡ y = (y1,..., yn) ˢÂÚÒfl ·ÎËʇȯËÈ (‚ ÚÂÏË̇ı ‚˚·‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl)‚ıÓ‰ÌÓÈ ‚ÂÍÚÓ ıi, ÌÂÓ·ıÓ‰ËÏ˚È ‰Îfl Í·ÒÒËÙË͇ˆËË Û, Ú.Â. ‰Îfl ÔÓ„ÌÓÁËÓ‚‡ÌËfl „ӂ˚ıÓ‰ÌÓÈ ÏÂÚÍË Í‡Í x i0.ê‡ÒÒÚÓflÌË ([WiMa97]) d(x i, y) ÓÔ‰ÂÎflÂÚÒfl ͇Ín∑ d 2j ( xij , y j )j =1Ò dj(x ij, yj) = 1, ÂÒÎË xij ËÎË y j ÌÂËÁ‚ÂÒÚÌ˚. ÖÒÎË ‡ÚË·ÛÚ j (Ú.Â.
‰Ë‡Ô‡ÁÓÌ Á̇˜ÂÌËÈ x ij‰Îfl 1 ≤ i ≤ m) fl‚ÎflÂÚÒfl ÌÓÏË̇θÌ˚Ï, ÚÓ dj(x ij, y j) ÓÔ‰ÂÎflÂÚÒfl, ̇ÔËÏÂ, Í‡Í 1x ij ≠ yËÎË Í‡Í∑o| {1 ≤ t ≤ m : xt 0 = a, xij = xij } || {1 ≤ t ≤ m : xtj = xij } |−| {1 ≤ t ≤ m : xt 0 = a, xtj = yi} |q| {1 ≤ t ≤ m : xtj = y j } |‰Îfl q = 1 ËÎË 2; ÒÛÏχ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Í·ÒÒ‡Ï ‚˚ıÓ‰Ì˚ı ÏÂÚÓÍ, Ú.Â. Á̇˜ÂÌËÈ ‡ ËÁ{xt0 : 1 ≤ t ≤ m}.
ÑÎfl ÌÂÔÂ˚‚Ì˚ı ‡ÚË·ÛÚÓ‚ j ˜ËÒÎÓ d j ·ÂÂÚÒfl Í‡Í ‚Â΢Ë̇1Òڇ̉‡ÚÌÓ„Ó ÓÚÍÎÓÌÂÌËfl Á̇˜ÂÌËÈ| xij − y j |, ‰ÂÎÂÌ̇fl ̇ maxt xtj – min t xtj ËÎË Ì‡4xij, 1 ≤ t ≤ m.É·‚‡ 18ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËËÇ ˝ÚÓÈ „·‚ ҄ÛÔÔËÓ‚‡Ì˚ ÓÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl, ÔËÏÂÌflÂÏ˚ ÔË ÔÓ„‡ÏÏËÓ‚‡ÌËË ‰‚ËÊÂÌËfl Ó·ÓÚÓ‚, ÍÎÂÚÓ˜Ì˚ı ‡‚ÚÓχÚÓ‚, ÒËÒÚÂÏ Ò Ó·‡ÚÌÓÈ Ò‚flÁ¸˛ ËÏÌÓ„ÓˆÂ΂ÓÈ ÓÔÚËÏËÁ‡ˆËË.18.1. êÄëëíéüçàü Ç éêÉÄçàáÄñàà ÑÇàÜÖçàü êéÅéíéÇåÂÚÓ‰˚ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‡‚ÚÓχÚ˘ÂÒÍËı ÏÂı‡ÌËÁÏÓ‚ ÔËÏÂÌfl˛ÚÒfl ‚ ӷ·ÒÚË Ó·ÓÚÓÚÂıÌËÍË, ÒËÒÚÂχı ‚ËÚۇθÌÓÈ Â‡Î¸ÌÓÒÚË Ë ‡‚ÚÓχÚËÁËÓ‚‡ÌÌÓ„Ó ÔÓÂÍÚËÓ‚‡ÌËfl. åÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ –˝ÚÓ ÏÂÚË͇, ËÒÔÓθÁÛÂχfl ‚ ÏÂÚÓ‰ËÍ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‡‚ÚÓχÚ˘ÂÒÍËı ÏÂı‡ÌËÁÏÓ‚.êÓ·ÓÚÓÏ Ì‡Á˚‚‡ÂÚÒfl ÍÓ̘̇fl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÊfiÒÚÍËı Á‚Â̸‚, Ó„‡ÌËÁÓ‚‡ÌÌ˚ı‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ÍËÌÂχÚ˘ÂÒÍÓÈ Ë‡ıËÂÈ. ÖÒÎË Ó·ÓÚ ËÏÂÂÚ n ÒÚÂÔÂÌÂÈ Ò‚Ó·Ó‰˚, ˝ÚÓ Ô˂ӉËÚ Ì‡Ò Í n-ÏÂÌÓÏÛ ÏÌÓ„ÓÓ·‡Á˲ ë, ̇Á˚‚‡ÂÏÓÏÛ ÔÓÒÚ‡ÌÒÚ‚ÓÏÍÓÌÙ˄ۇˆËÈ (ËÎË C-ÔÓÒÚ‡ÌÒÚ‚ÓÏ) Ó·ÓÚ‡.
ꇷӘ ÔÓÒÚ‡ÌÒÚ‚Ó W Ó·ÓÚ‡ –˝ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ԉ·ı ÍÓÚÓÓ„Ó Ó·ÓÚ ÔÂÂÏ¢‡ÂÚÒfl. é·˚˜ÌÓ ÓÌÓ ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó 3 . é·Î‡ÒÚ¸ ÔÂÔflÚÒÚ‚ËÈ ëÇ – ÏÌÓÊÂÒÚ‚Ó‚ÒÂı ÍÓÌÙ˄ۇˆËÈ q ∈ C , ÍÓÚÓ˚ ÎË·Ó ‚˚ÌÛʉ‡˛Ú Ó·ÓÚ‡ ÒÚ‡ÎÍË‚‡Ú¸Òfl ÒÔÂÔflÚÒÚ‚ËflÏË Ç, ÎË·Ó Á‡ÒÚ‡‚Îfl˛Ú ‡ÁÌ˚ Á‚Â̸fl Ó·ÓÚ‡ ÒÚ‡ÎÍË‚‡Ú¸Òfl ÏÂʉÛÒÓ·ÓÈ. á‡Ï˚͇ÌË Cl(Cfree) ÏÌÓÊÂÒÚ‚‡ Cfree = C\{CB} ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏÍÓÌÙ˄ۇˆËÈ ·ÂÁ ÒÚÓÎÍÌÓ‚ÂÌËÈ.
ᇉ‡˜‡ ‡Î„ÓËÚχ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ÒÓÒÚÓËÚ ‚ ÔÓËÒÍ ҂ӷӉÌÓ„Ó ÓÚ ÒÚÓÎÍÌÓ‚ÂÌËÈ ÔÛÚË ÓÚ Ô‚Ó̇˜‡Î¸ÌÓÈÍÓÌÙ˄ۇˆËË Í ÍÓ̘ÌÓÈ.åÂÚËÍÓÈ ÍÓÌÙ˄ۇˆËË Ì‡Á˚‚‡ÂÚÒfl β·‡fl ÏÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌåÙ˄ۇˆËÈ ë Ó·ÓÚ‡.é·˚˜ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÌÙ˄ۇˆËÈ ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÛÔÓfl‰Ó˜ÂÌÌÛ˛¯ÂÒÚÂÍÛ ˜ËÒÂÎ (x, y, z, α, β, γ), „‰Â Ô‚˚ ÚË ˜ËÒ· – ÍÓÓ‰Ë̇Ú˚ ÔÓÎÓÊÂÌËfl ËÔÓÒΉÌË ÚË – ÓËÂÌÚ‡ˆËfl. äÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË ‚˚‡ÊÂÌ˚ ۄ·ÏË ‚ ‡‰Ë‡Ì‡ı. àÌÚÛËÚË‚ÌÓ, ıÓÓ¯‡fl χ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÌÙ˄ۇˆËflÏË – ˝ÚÓχ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, Á‡ÏÂÚ‡ÂÏÓ„Ó Ó·ÓÚÓÏ ‚ ıӉ ÔÂÂÏ¢ÂÌËfl ÏÂʉÛÌËÏË (Á‡ÏÂÚ‡ÂÏ˚È Ó·˙ÂÏ).
é‰Ì‡ÍÓ ‡Ò˜ÂÚ Ú‡ÍÓÈ ÏÂÚËÍË fl‚ÎflÂÚÒfl ˜ÂÁÏÂÌÓ‰ÓÓ„ÓÒÚÓfl˘ËÏ ‰ÂÎÓÏ.èӢ ‚ÒÂ„Ó ‡ÒÒχÚË‚‡Ú¸ ë-ÔÓÒÚ‡ÌÒÚ‚Ó Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ËËÒÔÓθÁÓ‚‡Ú¸ ‚ÍÎˉӂ˚ ‡ÒÒÚÓflÌËfl ËÎË Ëı Ó·Ó·˘ÂÌËfl. ÑÎfl Ú‡ÍËı ÏÂÚËÍ ÍÓÌÙ˄ۇˆËË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÌÓχÎËÁ‡ˆËfl ÍÓÓ‰ËÌ‡Ú ÓËÂÌÚ‡ˆËË Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÓÌË ·˚ÎË Ó‰Ë̇ÍÓ‚˚ÏË ÔÓ ‚Â΢ËÌÂ Ò ÍÓÓ‰Ë̇ڇÏË ÔÓÎÓÊÂÌËfl.
ÉÛ·Ó „Ó‚Ófl,ÍÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË ÛÏÌÓʇ˛ÚÒfl ̇ χÍÒËÏÛÏ Á̇˜ÂÌËÈ x, y ËÎË z ‡Áχӄ‡Ì˘˂‡˛˘Â„Ó ·ÎÓ͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡. èËÏÂ˚ Ú‡ÍËı ÏÂÚËÍ ÍÓÌÙ˄ۇˆËË Ô˂ӉflÚÒfl ÌËÊÂ.268ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂÇ Ó·˘ÂÏ ÒÎÛ˜‡Â ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÌÙ˄ۇˆËÈ ‰Îfl ÚÂıÏÂÌÓ„Ó ÊÂÒÚÍÓ„Ó Ú·ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò „ÛÔÔÓÈ ãË ISO(3):C 3 × P3 . é·˘‡fl ÙÓχ χÚˈ˚ ‚ISO(3) Á‡‰‡ÂÚÒfl Í‡Í R X, 0 1„‰Â ∈ SO(3) P3 Ë X ∈ 3. ÖÒÎË Xq Ë R q fl‚Îfl˛ÚÒfl ÍÓÏÔÓÌÂÌÚ‡ÏË ÔÂÂÌÓÒ‡ Ë‚‡˘ÂÌËfl ÍÓÌÙ˄ۇˆËË q = (Xq , Rq ) ∈ ISO(3), ÚÓ ÏÂÚË͇ ÍÓÌÙ˄ۇˆËË ÏÂʉÛÍÓÌÙ˄ۇˆËflÏË q Ë r Á‡‰‡ÂÚÒfl Í‡Í wtr || Xq − Xr || + wrot f ( Rq , Rr ), „‰Â ‡ÒÒÚÓflÌË ÔÂÂÌÓÒ‡ || Xq − Xr || ÔÓÎÛ˜‡ÂÚÒfl ‚ ÂÁÛθڇÚ ËÒÔÓθÁÓ‚‡ÌËfl ÌÂÍÓÚÓÓÈ ÌÓÏ˚ || ⋅ || ̇3, ‡ ‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl f(Rq , Rr) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ Ò͇ÎflÌÓÈ ÙÛÌ͈ËÂÈ,Á‡‰‡˛˘ÂÈ Ì‡Ï ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚‡˘ÂÌËflÏË Rq , Rr ∈ SO(3).
ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËflχүڇ·ËÛÂÚÒfl ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl ÔÂÂÌÓÒ‡ Ò ÔÓÏÓ˘¸˛ ‚ÂÒÓ‚ w tr Ë wrot.åÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡ – β·‡fl ÏÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â 3.àÏÂÂÚÒfl Ú‡ÍÊ ÏÌÓ„Ó ‰Û„Ëı ÚËÔÓ‚ ÏÂÚËÍ, ËÒÔÓθÁÛÂÏ˚ı ‚ ÔÓˆÂÒÒ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ, ‚ ˜‡ÒÚÌÓÒÚË, ËχÌÓ‚˚ ÏÂÚËÍË, ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇,‡ÒÒÚÓflÌË ÓÒÚ‡ Ë Ú.Ô.ÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË – ÏÂÚË͇ ÍÓÌÙ˄ۇˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl ͇Í6 32||( wi | xi − yi |)2 x−y+ii i =1i=4∑∑1/ 2‰Îfl β·˚ı x, y ∈ 6, „‰Â x = (x1,..., x6), x1, x2 , x3 – ÍÓÓ‰Ë̇Ú˚ ÔÓÎÓÊÂÌËfl, x4 , x5 , x6 –ÍÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË Ë wi – ÌÓχÎËÁËÛ˛˘ËÈ ÏÌÓÊËÚÂθ.
ÇÁ‚¯ÂÌÌÓ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ‚ 6 ‰Â·ÂÚ Ó‰Ë̇ÍÓ‚ÓÈ Á̇˜ËÏÓÒÚ¸ Ë ÔÓÎÓÊÂÌËfl, ËÓËÂÌÚ‡ˆËË.å‡Ò¯Ú‡·ËÓ‚‡ÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂå‡Ò¯Ú‡·ËÓ‚‡ÌÌ˚Ï Â‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÍÓÌÙ˄ۇˆËË Ì‡ 6 , ÓÔ‰ÂÎÂÌ̇fl ͇Í6 322 s | xi − yi | +(1 − s) ( wi | xi − yi |) i =1i=4∑∑1/ 2‰Îfl β·˚ı x, y ∈ 6. å‡Ò¯Ú‡·ËÓ‚‡ÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÁÏÂÌflÂÚ ÓÚÌÓÒËÚÂθÌÛ˛ Á̇˜ËÏÓÒÚ¸ ˝ÎÂÏÂÌÚÓ‚ ÔÓÎÓÊÂÌËfl Ë ÓËÂÌÚ‡ˆËË ÔÓÒ‰ÒÚ‚ÓÏ Ï‡Ò¯Ú‡·ÌÓ„Ó Ô‡‡ÏÂÚ‡ s.ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„ÓÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó – ÏÂÚË͇ ÍÓÌÙ˄ۇˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl ͇Í6 3px−y+||( wi | xi − yi |) p ii i =1i=4∑∑1/ p269É·‚‡ 18.