Главная » Просмотр файлов » Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008)

Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 60

Файл №1185330 Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008).pdf) 60 страницаЕ. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330) страница 602020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 60)

ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËˉÎfl β·˚ı x, y ∈ 6. é̇ ËÒÔÓθÁÛÂÚ Ô‡‡ÏÂÚ p ≥ 1 Ë Í‡Í Ë ‚ ‚ÍÎˉӂÓÏ ÒÎÛ˜‡Â,ËÏÂÂÚ Ó‰Ë̇ÍÓ‚Û˛ Á̇˜ËÏÓÒÚ¸ ÔÓÎÓÊÂÌËfl Ë ÓËÂÌÚ‡ˆËË.åÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„ÓåÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6 ,ÓÔ‰ÂÎÂÌ̇fl ͇Í6 3p1p2 | xi − yi | + ( wi | xi − yi |)  i =1i=4∑∑1 / p3‰Îfl ‚ÒÂı x, y ∈ 6. ê‡Á΢Ëfl ÏÂÊ‰Û ÔÓÎÓÊÂÌËÂÏ Ë ÓËÂÌÚ‡ˆËÂÈ ÓÔ‰ÂÎfl˛ÚÒfl ÒËÒÔÓθÁÓ‚‡ÌËÂÏ Ô‡‡ÏÂÚÓ‚ p1 ≥ 1 (‰Îfl ÔÓÎÓÊÂÌËfl) Ë p2 ≥ 1 (‰Îfl ÓËÂÌÚ‡ˆËË).ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË å‡Ìı˝ÚÚÂ̇ÇÁ‚¯ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ å‡Ìı˝ÚÚÂ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6,ÓÔ‰ÂÎÂÌ̇fl ͇Í36i =1i=4∑ | xi − yi | +∑ wi | xi − yi |‰Îfl β·˚ı x, y ∈ 6 .

é̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÓχÎËÁÛ˛˘Â„Ó ÏÌÓÊËÚÂÎfl ÒÓ·˚˜ÌÓÈ l1 -ÏÂÚËÍÓÈ Ì‡ 6 .åÂÚË͇ ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡åÂÚË͇ ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡ – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ ÔÓÒÚ‡ÌÒÚ‚ÂÍÓÌÙË„Û‡ˆËË ë Ó·ÓÚ‡, ÓÔ‰ÂÎÂÌ̇fl ͇Ímax || a(q ) − a( p) ||a ∈A‰Îfl β·˚ı ÍÓÌÙË„Û‡ˆËÈ q, r ∈ C, „‰Â a(q) – ÔÓÎÓÊÂÌË ÚÓ˜ÍË ‡ ‚ ‡·Ó˜ÂÏÔÓÒÚ‡ÌÒÚ‚Â 3, ÍÓ„‰‡ Ó·ÓÚ Ì‡ıÓ‰ËÚÒfl ‚ ÍÓÌÙË„Û‡ˆËË q, Ë || ⋅ || – Ӊ̇ ËÁ ÌÓÏ̇ 3, Ó·˚˜ÌÓ Â‚ÍÎˉӂ‡ ÌÓχ. àÌÚÛËÚË‚ÌÓ, ÏÂÚË͇ ‚˚˜ËÒÎflÂÚ Ï‡ÍÒËχθÌÓ ËÁÚÂı ‡ÒÒÚÓflÌËÈ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓ˚ ÔÓıÓ‰ËÚ Í‡Ê‰‡fl ˜‡ÒÚ¸ Ó·ÓÚ‡ÔË Â„Ó ÔÂÂıӉ ÓÚ Ó‰ÌÓÈ ÍÓÌÙË„Û‡ˆËË Í ‰Û„ÓÈ (ÒÏ. ÏÂÚË͇ Ó„‡Ì˘ÂÌÌÓ„Ó·ÎÓ͇).åÂÚË͇ Û„ÎÓ‚ ùÈÎÂ‡åÂÚË͇ Û„ÎÓ‚ ùÈÎÂ‡ – ÏÂÚË͇ ‚‡˘ÂÌËfl ̇ „ÛÔÔ SO(3) (‰Îfl ÒÎÛ˜‡fl ËÒÔÓθÁÓ‚‡ÌËfl ˝ÈÎÂÓ‚˚ı Û„ÎÓ‚ ‰Îfl ‚‡˘ÂÌËfl), ÓÔ‰ÂÎÂÌ̇fl ͇Íwrot ∆(θ1 , θ 2 )2 + ∆(φ1 , φ 2 )2 + ∆( η1 , η2 )2‰Îfl ‚ÒÂı R1 , R2 ∈ SO(3), Á‡‰‡ÌÌ˚ı ۄ·ÏË ùÈÎÂ‡ (θ1, φ1, η1 ) Ë (θ2, φ2, η2 ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â ∆(θ1 , θ 2 ) = min{| θ1 − θ 2 |, 2 π − | θ1 − θ 2 |}, θ i ∈[0, 2 π] – ÏÂÚË͇ ÏÂʉÛۄ·ÏË Ë wrot –ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl.åÂÚË͇ ‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚åÂÚËÍÓÈ Â‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‚‡˘ÂÌËfl ̇ Ô‰ÒÚ‡‚ÎÂÌËË Ò ÔÓÏÓ˘¸˛ ‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ ‰Îfl SO(3), Ú.Â.

Ô‰ÒÚ‡‚ÎÂÌËË SO(3) ͇ÍÏÌÓÊÂÒÚ‚‡ ÚÓ˜ÂÍ (‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚) ̇ ‰ËÌ˘ÌÓÈ ÒÙÂ S3 ‚ 4 ÒÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‡ÌÚËÔÓ‰‡Î¸Ì˚ÏË ÚӘ͇ÏË (q ~ –q). чÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË SO(3)270ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂÔ‰ÔÓ·„‡ÂÚ Ì‡Î˘Ë ÏÌÓ„Ëı ‚ÓÁÏÓÊÌ˚ı ÏÂÚËÍ Ì‡ ÌÂÏ, ̇ÔËÏÂ Ú‡ÍËı, ͇Í:1) || ln(q −1r ) ||,42) wrot (1− || λ ||), λ =∑ qi ri ,i =13) min{|| q − r ||, || q + r ||},44) arccos λ, λ =∑ qi ri ,i =14„‰Â q = q1 + q2 i + q3 j + q4 k ,∑ qi = 1,|| ⋅ || – ÌÓχ ̇ 4 Ë wrot – ÍÓ˝ÙÙˈËÂÌÚi =1χүڇ·ËÓ‚‡ÌËfl.åÂÚË͇ ˆÂÌÚ‡ χÒÒ˚åÂÚË͇ ˆÂÌÚ‡ χÒÒ˚ – ÏÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎÂÌ̇fl ͇Í‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ Ï‡ÒÒ˚ Ó·ÓÚ‡ ‚ ‰‚Ûı ÍÓÌÙË„Û‡ˆËflı.

ñÂÌÚχÒÒ˚ ‡ÔÔÓÍÒËÏËÛÂÚÒfl ÔÛÚÂÏ ÛÒ‰ÌÂÌËfl ‚ÒÂı ‚Â¯ËÌ Ó·˙ÂÍÚ‡.åÂÚË͇ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇åÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡,ÓÔ‰ÂÎÂÌ̇fl Í‡Í Ï‡ÍÒËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·ÓÈ ‚Â¯ËÌÓÈÓ„‡Ì˘˂‡˛˘Â„Ó ·ÎÓ͇ Ó·ÓÚ‡ ‚ Ó‰ÌÓÈ ÍÓÌÙË„Û‡ˆËË Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ‚Â¯ËÌÓÈ ‚ ‰Û„ÓÈ ÍÓÌÙË„Û‡ˆËË.ê‡ÒÒÚÓflÌË ÔÓÁ˚ê‡ÒÒÚÓflÌË ÔÓÁ˚ Ó·ÂÒÔ˜˂‡ÂÚ ÏÂÛ ÌÂÒıÓ‰ÒÚ‚‡ ÏÂÊ‰Û ‰ÂÈÒÚ‚ËflÏË ËÒÔÓÎÌËÚÂθÌ˚ı ÛÒÚÓÈÒÚ‚ (‚Íβ˜‡fl Ó·ÓÚÓ‚ Ë Î˛‰ÂÈ) ‚ ÔÓˆÂÒÒ ӷۘÂÌËfl Ó·ÓÚÓ‚ÔÓÒ‰ÒÚ‚ÓÏ ËÏËÚ‡ˆËË.Ç ˝ÚÓÏ ÍÓÌÚÂÍÒÚ ËÒÔÓÎÌËÚÂθÌ˚ ÛÒÚÓÈÒÚ‚‡ ‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÍËÌÂχÚ˘ÂÒÍË ˆÂÔË Ë Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ ÙÓÏ ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‰Â‚‡, Ú‡ÍÓ„Ó ˜ÚÓ Í‡Ê‰ÓÂÁ‚ÂÌÓ ‚ ÍËÌÂχÚ˘ÂÒÍÓÈ ˆÂÔË Ô‰ÒÚ‡‚ÎÂÌÓ Â‰ËÌÒÚ‚ÂÌÌ˚Ï ·ÓÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‰Â‚‡. äÓÌÙË„Û‡ˆËfl ˆÂÔË Ô‰ÒÚ‡‚ÎÂ̇ ÔÓÁÓÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ„Ó ‰Â‚‡,ÔÓÎÛ˜ÂÌÌÓÈ ÔÓÒ‰ÒÚ‚ÓÏ ‡ÁÏ¢ÂÌËfl Ô‡˚ (ni, li) ̇ ͇ʉÓÏ · e i.

á‰ÂÒ¸ nifl‚ÎflÂÚÒfl ‰ËÌ˘Ì˚Ï ‚ÂÍÚÓÓÏ ÌÓχÎË, Ô‰ÒÚ‡‚Îfl˛˘ËÏ ÓËÂÌÚ‡ˆË˛ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó Á‚Â̇ ˆÂÔË, ‡ li ÂÒÚ¸ ‰ÎË̇ Á‚Â̇. ä·ÒÒ ÔÓÁ ÒÓÒÚÓËÚ ËÁ ‚ÒÂı ÔÓÁ ‰‡ÌÌÓ„ÓÍËÌÂχÚ˘ÂÒÍÓ„Ó ‰Â‚‡.ê‡ÒÒÚÓflÌË ÔÓÁ˚ – ‡ÒÒÚÓflÌË ̇ ‰‡ÌÌÓÏ Í·ÒÒ ÔÓÁ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒÛÏÏÓÈÏÂ ÌÂÒıÓ‰ÒÚ‚‡ ‰Îfl ͇ʉÓÈ Ô‡˚ ÒÓÔÓÒÚ‡‚ËÏ˚ı ÓÚÂÁÍÓ‚ ‚ ‰‡ÌÌ˚ı ‰‚Ûı ÔÓÁ‡ı.åÂÚËÍË ÏËÎÎË·ÓÚÓ‚åËÎÎË·ÓÚ˚ – „ÛÔÔ‡ ‡ÁÌÓÓ‰Ì˚ı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ ÂÒÛÒ‡Ï Ó·ÓÚÓ‚ χÎÓ„Ó‡ÁÏÂ‡. ÉÛÔÔ‡ Ó·ÓÚÓ‚ ÏÓÊÂÚ ÍÓÎÎÂÍÚË‚ÌÓ Ó·ÏÂÌË‚‡Ú¸Òfl ËÌÙÓχˆËÂÈ. éÌË ‚ÒÓÒÚÓflÌËË Ó·˙‰ËÌflÚ¸ ËÌÙÓχˆË˛ Ó ‡ÒÒÚÓflÌËflı, ÔÓÎÛ˜‡ÂÏÛ˛ ÓÚ ‡ÁÌ˚ı Ô·ÚÙÓÏ, Ë ÒÚÓËÚ¸ ͇ÚÛ „ÎÓ·‡Î¸ÌÓ„Ó ‡ÁÏ¢ÂÌËfl, Ô‰ÒÚ‡‚Îfl˛˘Û˛ ÒÓ·ÓÈ Â‰ËÌÓÂÍÓÎÎÂÍÚË‚ÌÓ ‚ˉÂÌË ÓÍÛʇ˛˘ÂÈ Ò‰˚.

èË ÔÓ„‡ÏÏËÓ‚‡ÌËË ÔÂÂÏ¢ÂÌËflÏËÎÎË·ÓÚÓ‚ Ò ˆÂθ˛ ÔÓÒÚÓÂÌËfl ÏÂÚËÍË ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËfl ÏÓÊÌÓ̇Á̇˜ËÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÎÛ˜‡ÈÌ˚ı ÚÓ˜ÂÍ ‚ÓÍÛ„ Ó·ÓÚ‡ Ë Ô‰ÒÚ‡‚ËÚ¸Í‡Ê‰Û˛ ÚÓ˜ÍÛ Í‡Í ÏÂÒÚÓ ‰Îfl Ô‰ÒÚÓfl˘Â„Ó ÔÂÂÏ¢ÂÌËfl. èÓÒΠ˝ÚÓ„Ó ‚˚·Ë‡ÂÚÒflÚӘ͇ Ò Ì‡Ë·ÓΠ‚˚ÒÓÍÓÈ ÙÛÌ͈ËÂÈ ÔÓÎÂÁÌÓÒÚË Ë Ó·ÓÚ Ì‡Ô‡‚ÎflÂÚÒfl ËÏÂÌÌÓ ‚É·‚‡ 18.

ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË271˝ÚÛ ÚÓ˜ÍÛ. í‡Í, ÏÂÚË͇ Ò‚Ó·Ó‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎflÂχfl ÍÓÌÚÛÓÏ Ò‚Ó·Ó‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÔÓÁ‚ÓÎflÂÚ ‚˚·Ë‡Ú¸ ÚÓθÍÓ Ú ÚÓ˜ÍË, ÍÓÚÓ˚ Ì Ô‰ÔÓ·„‡˛Ú ÔÂÓ‰ÓÎÂÌËfl Ó·ÓÚÓÏ Í‡ÍËı-ÎË·Ó ÔÂÔflÚÒÚ‚ËÈ; ÏÂÚËÍÓÈ ËÒÍβ˜ÂÌËflÒÚÓÎÍÌÓ‚ÂÌËÈ ÓÚ‚Â„‡˛ÚÒfl ÔÂÂÏ¢ÂÌËfl, χ¯ÛÚ ÍÓÚÓ˚ı ÔÓıÓ‰ËÚ ÒÎ˯ÍÓÏ·ÎËÁÍÓ ÓÚ ÔÂÔflÚÒÚ‚ËÈ; ÏÂÚËÍÓÈ ÓÒ‚‡Ë‚‡ÂÏÓÈ Ó·Î‡ÒÚË ÔÓÓ˘fl˛ÚÒfl ÔÂÂÏ¢ÂÌËflÓ·ÓÚ‡ ÔÓ Ï‡¯ÛÚ‡Ï, ‚˚‚Ó‰fl˘ËÏ Â„Ó Ì‡ ÓÚÍ˚ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó; ÏÂÚËÍÓÈ ÍÓÌÙË„Û‡ˆËË ÔÓÓ˘fl˛ÚÒfl ÔÂÂÏ¢ÂÌËfl, ÔÓÁ‚ÓÎfl˛˘Ë ÒÓı‡ÌËÚ¸ ÍÓÌÙË„Û‡ˆË˛;ÏÂÚË͇ ÎÓ͇ÎËÁ‡ˆËË, ÓÒÌÓ‚‡Ì̇fl ̇ ۄΠ‡ÒıÓʉÂÌËfl ÏÂÊ‰Û Ó‰ÌÓÈ ËÎË ÌÂÒÍÓθÍËÏË Ô‡‡ÏË ÎÓ͇ÎËÁ‡ˆËË, ÔÓÓ˘flÂÚ Ú ÔÂÂÏ¢ÂÌËfl, ÍÓÚÓ˚ χÍÒËÏËÁËÛ˛ÚÎÓ͇ÎËÁ‡ˆË˛ ([GKC04], ÒÏ.

ê‡ÒÒÚÓflÌË ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ, ê‡ÒÒÚÓflÌËÂÌÓÒËθ˘ËÍÓ‚ ÔˇÌËÌÓ, „Î. 19).18.2. êÄëëíéüçàü Ñãü äãÖíéóçõï ÄÇíéåÄíéÇèÛÒÚ¸ S, 2 ≤ | S | < ∞ ÂÒÚ¸ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó (‡ÎÙ‡‚ËÚ) Ë ÔÛÒÚ¸ S ∞ – ÏÌÓÊÂÒÚ‚Ó·ÂÒÍÓ̘Ì˚ı ‚ Ó·Â ÒÚÓÓÌ˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {xi}i∞= – ∞ (ÍÓÌÙË„Û‡ˆËÈ) ˝ÎÂÏÂÌÚÓ‚ (·ÛÍ‚) ÏÌÓÊÂÒÚ‚‡ S. (é‰ÌÓÏÂÌ˚È) ÍÎÂÚÓ˜Ì˚È ‡‚ÚÓÏ‡Ú – ÌÂÔÂ˚‚ÌÓÂÓÚÓ·‡ÊÂÌË f : S∞ → S∞, ÍÓÚÓÓ ÍÓÏÏÛÚËÛÂÚ Ò ÓÚÓ·‡ÊÂÌËÂÏ ÔÂÂÌÓÒ‡ g : S∞ →S∞, ÓÔ‰ÂÎÂÌÌ˚Ï Í‡Í g( xi ) = xi +1 . èÓÒΠÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË Ì‡ S∞ ÔÓÎÛ˜ÂÌÌÓÂÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÏÂÒÚÂ Ò ÓÚÓ·‡ÊÂÌËÂÏ f Ó·‡ÁÛ˛Ú ‰ËÒÍÂÚÌÛ˛ ‰Ë̇Ï˘ÂÒÍÛ˛ ÒËÒÚÂÏÛ.

äÎÂÚÓ˜Ì˚ ‡‚ÚÓχÚ˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ·ÂÒÍÓ̘Ì˚ ‚ Ó·ÂÒÚÓÓÌ˚ Ú‡·Îˈ˚ ‚ÏÂÒÚÓ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ) ÔËÏÂÌfl˛ÚÒfl ‚ ÒËÏ‚Ó΢ÂÒÍÓȉË̇ÏËÍÂ, ËÌÙÓχÚËÍÂ Ë (Í‡Í ÏÓ‰ÂÎË) ‚ ÙËÁËÍÂ Ë ·ËÓÎÓ„ËË. éÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËflÏÂÊ‰Û ÍÓÌÙË„Û‡ˆËflÏË {xi} Ë {yi} ËÁ S∞ (ÒÏ. [BFK99]) Ô˂‰ÂÌ˚ ÌËÊÂ.åÂÚË͇ ä‡ÌÚÓ‡åÂÚËÍÓÈ ä‡ÌÚÓ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl ͇Í2 − min{i ≥ 0:| x i − yi | + | x − i − y − i |≠ 0}.1Ó·Ó·˘ÂÌÌÓÈ ÏÂÚËÍË ä‡ÌÚÓ‡ („Î. 11). ëÓÓÚ‚ÂÚ2ÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï.é̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ a =èÓÎÛÏÂÚË͇ ÅÂÒËÍӂ˘‡èÓÎÛÏÂÚËÍÓÈ ÅÂÒËÍӂ˘‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl ͇Ílim l →∞| −l ≤ i ≤ l : xi ≠ yi |.2l + 1ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï (ÒÏ.

ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡ ̇ ËÁÏÂËÏ˚ı ÙÛÌ͈Ëflı, „Î. 13).èÓÎÛÏÂÚË͇ ÇÂÈÎflèÓÎÛÏÂÚË͇ ÇÂÈÎfl ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl ͇Ílim l →∞ maxk ∈| k + 1 ≤ i ≤ l : xi ≠ yi |.lùÚ‡ Ë Ô˂‰ÂÌÌ˚ ‚˚¯Â ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ë Ì ‚ ‡  Ë ‡ Ì Ú Ì ˚ Ï Ë Ó Ú Ì Ó Ò Ë Ú Â Î ¸ Ì Ó Ô Â ÂÌÓÒ‡, Ӊ̇ÍÓ ÓÌË Ì fl‚Îfl˛ÚÒfl ÒÂÔ‡‡·ÂθÌ˚ÏË ËÎË ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË (ÒÏ.ê‡ÒÒÚÓflÌË ÇÂÈÎfl, „Î. 13).272ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ18.3. êÄëëíéüçàü Ç íÖéêàà äéçíêéãüÇ ÚÂÓËË ÍÓÌÚÓÎfl ‡ÒÒχÚË‚‡ÂÚÒfl ˆÂÔ¸ Ó·‡ÚÌÓÈ Ò‚flÁË ÏÂÊ‰Û ÛÒÚ‡ÌÓ‚ÍÓÈ ê(ÙÛÌ͈Ëfl, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÔÓ‰ÎÂʇ˘ËÈ ÍÓÌÚÓβ Ó·˙ÂÍÚ Ë ÛÔ‡‚Îfl˛˘ËÏÛÒÚÓÈÒÚ‚ÓÏ ë (ÙÛÌ͈Ëfl, ÍÓÚÓÛ˛ Ô‰ÒÚÓËÚ ÔÓÒÚÓËÚ¸).

êÂÁÛÎ¸Ú‡Ú y, ËÁÏÂÂÌÌ˚È ÒÂÌÒÓÌ˚Ï ‰‡Ú˜ËÍÓÏ, Ò‡‚ÌË‚‡ÂÚÒfl Ò ˝Ú‡ÎÓÌÌ˚Ï Á̇˜ÂÌËÂÏ r. á‡ÚÂÏÛÔ‡‚Îfl˛˘Â ÛÒÚÓÈÒÚ‚Ó ËÒÔÓθÁÛÂÚ ‚˚˜ËÒÎÂÌÌÛ˛ ӯ˷ÍÛ e = r – y ‰Îfl ‚‚Ó‰‡‰‡ÌÌ˚ı u = Ce. èË Ì‡ÎË˜Ë ÌÛ΂˚ı ̇˜‡Î¸Ì˚ı ÛÒÎÓ‚ËÈ Ò˄̇Î˚ ‚‚Ó‰‡ Ë ‚˚‚Ó‰‡ ̇ÛÒÚ‡ÌÓ‚ÍÛ ÒÓÓÚÌÓÒflÚÒfl Í‡Í y = Pu, „‰Â r, y, v Ë P, C fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ˜‡ÒÚÓÚÌÓÈPCÔÂÂÏÂÌÌÓÈ s. í‡ÍËÏ Ó·‡ÁÓÏ, y =r Ë y ≈ r (Ú.Â. ‚˚‚Ó‰ ÍÓÌÚÓÎËÛÂÚÒfl1 + PCÔÓÒÚÓ ÛÒÚ‡ÌÓ‚ÍÓÈ ˝Ú‡ÎÓÌÌÓ„Ó Á̇˜ÂÌËfl), ÂÒÎË êë ·Óθ¯Â β·Ó„Ó Á̇˜ÂÌËfl s.ÖÒÎË ÒËÒÚÂχ ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í ÒËÒÚÂχ ÎËÌÂÈÌ˚ı ‰ËÙÙÂÂ̈ˇθÌ˚ı Û‡‚ÌÂÌËÈ,PCÚÓ ÔÂ‰‡ÚӘ̇fl ÙÛÌ͈Ëflfl‚ÎflÂÚÒfl ‡ˆËÓ̇θÌÓÈ ÙÛÌ͈ËÂÈ.

ìÒÚ‡Ìӂ͇ ê1 + PCfl‚ÎflÂÚÒfl ÒÚ‡·ËθÌÓÈ, ÂÒÎË Ì ËÏÂÂÚ ÔÓβÒÓ‚ ‚ Á‡ÏÍÌÛÚÓÈ Ô‡‚ÓÈ ÔÓÎÛÔÎÓÒÍÓÒÚËë+ = {s ∈ : s ≥ 0}.ᇉ‡˜‡ ÛÒÚÓȘ˂ÓÈ ÒÚ‡·ËÎËÁ‡ˆËË ÒÓÒÚÓËÚ ‚ ̇ıÓʉÂÌËË ‰Îfl Á‡‰‡ÌÌÓÈ ÌÓÏË̇θÌÓÈ ÛÒÚ‡ÌÓ‚ÍË (ÏÓ‰ÂÎË) P0 Ë ÌÂÍÓÂÈ ÏÂÚËÍË d ̇ ÛÒÚ‡Ìӂ͇ı Ú‡ÍÓ„Ó ˆÂÌÚËÓ‚‡ÌÌÓ„Ó ‚ P0 ÓÚÍ˚ÚÓ„Ó ¯‡‡ Ò Ï‡ÍÒËχθÌ˚Ï ‡‰ËÛÒÓÏ, ˜ÚÓ·˚ ÌÂÍÓÚÓ˚ÂÛÔ‡‚Îfl˛˘Ë ÛÒÚÓÈÒÚ‚‡ (‡ˆËÓ̇θÌ˚ ÙÛÌ͈ËË) ë ÏÓ„ÎË ÒÚ‡·ËÎËÁËÓ‚‡Ú¸ ͇ʉ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓ„Ó ¯‡‡.É‡Ù G(P) ÛÒÚ‡ÌÓ‚ÍË ê ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı Ô‡ ‚ıÓ‰-‚˚ıÓ‰(u, y = P u). ä‡Í u Ú‡Í Ë y ÔË̇‰ÎÂÊ‡Ú ÔÓÒÚ‡ÌÒÚ‚Û ï‡‰Ë H2( +) Ô‡‚ÓÈÔÓÎÛÔÎÓÒÍÓÒÚË; „‡Ù fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ H 2 ( +) + H 2 ( +).àÏÂÌÌÓ, G(P) = f(P)H2( 2 ) ‰Îfl ÌÂÍÓÚÓÓÈ ÙÛÌ͈ËË f(P), ̇Á˚‚‡ÂÏÓÈ ÒËÏ‚ÓÎÓÏ„‡Ù‡, ‡ G(P) fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ H 2 ( 2 ).ÇÒ Ô˂‰ÂÌÌ˚ ÌËÊ ÏÂÚËÍË fl‚Îfl˛ÚÒfl ÔÓÔÛÒÍÓÔÓ‰Ó·Ì˚ÏË ÏÂÚË͇ÏË; ÓÌËÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌ˚, Ë ÒÚ‡·ËÎËÁ‡ˆËfl fl‚ÎflÂÚÒfl ÛÒÚÓȘ˂˚Ï Ò‚ÓÈÒÚ‚ÓÏ ÔÓÓÚÌÓ¯ÂÌ˲ Í Í‡Ê‰ÓÈ ËÁ ÌËı.åÂÚË͇ ÔÓÔÛÒ͇åÂÚË͇ ÔÓÔÛÒ͇ ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P 2 (‚‚‰Â̇ ‚ ÚÂÓ˲ ÍÓÌÚÓÎfl á‡ÏÂÒÓÏ Ë ùθ-á‡Í͇Ë) ÓÔ‰ÂÎflÂÚÒfl ͇Ígap( P1 , P2 ) =|| Π( P1 ) − Π( P2 ) ||2 ,„‰Â è(P o ), i = 1, 2 fl‚ÎflÂÚÒfl ÓÚÓ„Ó̇θÌÓÈ ÔÓÂ͈ËÂÈ „‡Ù‡ G(Pi) ÛÒÚ‡ÌÓ‚ÍË Pi,‡ÒÒχÚË‚‡ÂÏÓ„Ó Í‡Í Á‡ÏÍÌÛÚÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó H 2 ( 2 ).àÏÂÂÏgap( P1 , P2 ) = max{δ1 ( P1 , P2 ), δ1 ( P2 , P1 )},„‰Â δ1 ( P1 , P2 ) = infQ ∈H∞ || f ( P1 ) − f ( P2 )Q || H∞ Ë f(P) – ÒËÏ‚ÓÎ „‡Ù‡.ÖÒÎË Ä fl‚ÎflÂÚÒfl m × n χÚˈÂÈ Ò m < n, ÚÓ Â n ÒÚÓηˆÓ‚ ÔÓÓʉ‡˛Ú n-ÏÂÌÓÂÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ χÚˈ‡ Ç ÓÚÓ„Ó̇θÌÓÈ ÔÓÂ͈ËË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÚÓηˆÓ‚χÚˈ˚ Ä ËÏÂÂÚ ‚ˉ A( AT A) − 1AT .

Характеристики

Тип файла
PDF-файл
Размер
3,34 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее