Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 58
Текст из файла (страница 58)
҉̠Á̇˜ÂÌË ÍÓÏÔÓÌÂÌÚ‡ ı, Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í x. í‡Í, x = , ÂÒÎËnnx fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ ˜‡ÒÚÓÚÌÓÒÚË (‰ËÒÍÂÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ),n +1Ú.Â. ‚Ò x i ≥ 0, ∑xi = 1; Ë x =, ÂÒÎË ı fl‚ÎflÂÚÒfl ‡ÌÊËÓ‚‡ÌËÂÏ (ÔÂÂÒÚ‡ÌÓ‚ÍÓÈ),2Ú.Â. ‚Ò x i – ‡ÁÌ˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,..., n}.ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl x ∈ {0, 1}n (Ú.Â. ÍÓ„‰‡ ı fl‚ÎflÂÚÒfl ·Ë̇ÌÓÈ n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛) ÔÛÒÚ¸ X = {1 ≤ i ≤ n : xi = 1} Ë X = {1 ≤ i ≤ n : xi = 0}.
èÛÒÚ¸ | X ∩ Y |,| X ∪ Y |, | X \ Y | Ë | X∆Y | Ó·ÓÁ̇˜‡˛Ú ͇‰Ë̇θÌÓ ˜ËÒÎÓ ÔÂÂÒ˜ÂÌËfl, Ó·˙‰ËÌÂÌËfl, ‡ÁÌÓÒÚË Ë ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË ( X \ Y ) ∪ (Y \ X ) ÏÌÓÊÂÒÚ‚ X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.17.1. èéÑêéÅçéëíà à êÄëëíéüçàü Ñãü óàëãéÇõï ÑÄççõïèÓ‰Ó·ÌÓÒÚ¸ êÛʘÍËèÓ‰Ó·ÌÓÒÚ¸ êÛʘÍË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í∑ min{xi , yi}∑ max{xi , yi}257É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ıëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌËÂ1−∑ min{xi , yi}∑ | xi − yi |=∑ max{xi , yi} ∑ max{xi , yi}nÒÓ‚Ô‡‰‡ÂÚ Ì‡ ≥0Ò ÏÂÚËÍÓÈ Ì˜ÂÚÍÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡ (ÒÏ. „Î. 25).èÓ‰Ó·ÌÓÒÚ¸ êÓ·ÂÚÒ‡èÓ‰Ó·ÌÓÒÚ¸ êÓ·ÂÚÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Ímin{xi , yi}max{xi , yi}.∑( xi + yi )∑( xi + yi )èÓ‰Ó·ÌÓÒÚ¸ ùÎÎÂ̷„‡èÓ‰Ó·ÌÓÒÚ¸ ùÎÎÂ̷„‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í∑( xi + yi )1x i x i ≠ 0∑( xi + yi )(1 + 1x i yi = 0 ).ÅË̇Ì˚ ÒÎÛ˜‡Ë ÔÓ‰Ó·ÌÓÒÚÂÈ ùÎÎÂ̷„‡ Ë êÛʘÍË ÒÓ‚Ô‡‰‡˛Ú; ڇ͇fl ÔÓ‰Ó·ÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ (ËÎË Ê‡Í͇‰Ó‚ÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛Ó·˘ÌÓÒÚË):| X ∩Y || X ∪Y |ê‡ÒÒÚÓflÌË í‡ÌËÏÓÚÓ (ËÎË ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡) – ‡ÒÒÚÓflÌË ̇ {0, 1}n, ÓÔ‰ÂÎÂÌÌÓ ͇Í1−| X ∩ Y | | X∆Y |=.| X ∪Y | | X ∪Y |èÓ‰Ó·ÌÓÒÚ¸ ÉÎËÒÓ̇èÓ‰Ó·ÌÓÒÚ¸ ÉÎËÒÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í∑( xi + yi )1x i x i ≠ 0∑( xi + yi ).ÅË̇Ì˚ ÒÎÛ˜‡Ë ÔÓ‰Ó·ÌÓÒÚÂÈ ÉÎËcÓ̇, åÓÚ˚ÍË Ë Å˝fl-äÛÚËÒ‡ ÒÓ‚Ô‡‰‡˛Ú;ڇ͇fl ÔÓ‰Ó·ÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ чÈÒ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸˛ ëÓÂÌÒÂ̇,ÔÓ‰Ó·ÌÓÒÚ¸˛ ôÂ͇ÌÓ‚ÒÍÓ„Ó):2| X ∩Y |2| X ∩Y |.=| X ∪Y | + | X ∩Y | | X | + |Y |ê‡ÒÒÚÓflÌË ôÂ͇ÌÓ‚ÒÍӄӖчÈÒ‡ (ËÎË ÌÂÏÂÚ˘ÂÒÍËÈ ÍÓ˝ÙÙˈËÂÌÚ Å˝fl–äÛÚËÒ‡, ÌÓχÎËÁÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË) ÂÒÚ¸ ÔÓ˜ÚËÏÂÚË͇ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl ͇Í1−2| X ∩Y || X∆Y |=.| X |+|Y | | X |+|Y |258ó‡ÒÚ¸ IV.
ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËflê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËfl – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í1−∑ min{xi , yi}.min{∑ xi , ∑ yi}èÓ‰Ó·ÌÓÒÚ¸ åÓÚ˚ÍËèÓ‰Ó·ÌÓÒÚ¸ åÓÚ˚ÍË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í∑ min{xi , yi}∑ min{xi , yi}=n.∑( xi + yi}x+yèÓ‰Ó·ÌÓÒÚ¸ Å˝fl–äÛÚËÒ‡èÓ‰Ó·ÌÓÒÚ¸ Å˝fl-äÛÚËÒ‡ – ˝ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í2∑ min{xi , y j }.n( x + y )é̇ ̇Á˚‚‡ÂÚÒfl % ÔÓ‰Ó·ÌÓÒÚ¸˛ êÂÌÍÓÌÂ̇ (ËÎË ÔÓˆÂÌÚÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛),ÂÒÎË ı, Û fl‚Îfl˛ÚÒfl ‚ÂÍÚÓ‡ÏË ˜‡ÒÚÓÚÌÓÒÚË.ê‡ÒÒÚÓflÌËÂ Å˝fl–äÛÚËÒ‡ê‡ÒÒÚÓflÌËÂ Å˝fl-äÛÚËÒ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑ | xi − yi |.∑( xi + yi )ê‡ÒÒÚÓflÌË ä‡Ì·Â˚ê‡ÒÒÚÓflÌË ä‡Ì·Â˚ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑| xi − yi |.| xi | + | yi |èÓ‰Ó·ÌÓÒÚ¸ 1 äÛθ˜ËÌÒÍÓ„ÓèÓ‰Ó·ÌÓÒÚ¸ 1 äÛθ˜ËÌÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í∑ min{xi , yi}.∑ | xi − yi |ëÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ fl‚ÎflÂÚÒfl∑ | xi − yi |.∑ min{xi , yi}èÓ‰Ó·ÌÓÒÚ¸ 2 äÛθ˜ËÌÒÍÓ„ÓèÓ‰Ó·ÌÓÒÚ¸ 2 äÛθ˜ËÌÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Ín 1 1 + ∑ min{xi , yi}.2 x yÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ| x ∩ Y | ⋅(| X | + | Y |).2 | X |⋅|Y |259É·‚‡ 17.
ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ıèÓ‰Ó·ÌÓÒÚ¸ ŇÓÌË-ì·‡ÌË–ÅÛc‡èÓ‰Ó·ÌÓÒÚ¸ ŇÓÌË-ì·‡ÌË-ÅÛc‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í∑ min{xi , yi} + ∑ min{xi , yi} ∑(max1≤ j ≤ n x j − max{xi , yi})∑ max{xi , yi} + ∑ min{xi , yi} ∑(max1≤ j ≤ n x j − max{xi , yi}).ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ| X ∩Y | + | X ∩Y |⋅| X ∪Y || X ∪Y | + | X ∩Y |⋅| X ∪Y |.17.2. ÄçÄãéÉà ÖÇäãàÑéÇÄ êÄëëíéüçàüëÚÂÔÂÌÌÓ (p, r) – ‡ÒÒÚÓflÌËÂëÚÂÔÂÌÌ˚Ï (p, r)-‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í( ∑ wi ( xi − yi ) p )1 / pÑÎfl p = r ≥ 1 ÓÌÓ fl‚ÎflÂÚÒfl lp -ÏÂÚËÍÓÈ, ‚Íβ˜‡fl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Â‚ÍÎË‰Ó‚Û ÏÂÚËÍÛ, ÏÂÚËÍÛ å‡Ìı˝ÚÚÂ̇ Ë ˜Â·˚¯Â‚ÒÍÛ˛ ÏÂÚËÍÛ ‰Îfl n = 2,1 Ë ∞ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.ëÎÛ˜‡È 0 < p = r < 1 ̇Á˚‚‡ÂÚÒfl ‰Ó·Ì˚Ï lp-‡ÒÒÚÓflÌËÂÏ (Ì ÏÂÚË͇); ÓÌÓËÒÔÓθÁÛÂÚÒfl ‰Îfl ÒÎÛ˜‡Â‚, ÍÓ„‰‡ ÍÓ΢ÂÒÚ‚Ó Ì‡·Î˛‰ÂÌËÈ ÌÂÁ̇˜ËÚÂθÌÓ, ‡ ˜ËÒÎÓ nÔÂÂÏÂÌÌ˚ı ‚ÂÎËÍÓ.ÇÁ‚¯ÂÌÌ˚ ‚ÂÒËË ( ∑ wi ( xi − yi ) p )1 / p (Ò ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ‚ÂÒ‡ÏË w i) Ú‡ÍÊÂËÒÔÓθÁÛ˛ÚÒfl ‚ ÔËÎÓÊÂÌËflı ‰Îfl p = 2,1.ê‡ÒÒÚÓflÌË ‡Áχ èÂÌÓÛÁ‡ê‡ÒÒÚÓflÌË ‡Áχ èÂÌÓÛÁ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Ín ∑ | xi − yi | .éÌÓ ÔÓÔÓˆËÓ̇θÌÓ ÏÂÚËÍ å‡Ìı˝ÚÚÂ̇.
ë‰Ìflfl ‡ÁÌÓÒÚ¸ ôÂ͇ÌÓ‚ÒÍÓ„Ó∑ | xi − yi |.ÓÔ‰ÂÎflÂÚÒfl ͇Ínê‡ÒÒÚÓflÌË ÙÓÏ˚ èÂÌÓÛÁ‡ê‡ÒÒÚÓflÌË ÙÓÏ˚ èÂÌÓÛÁ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑(( xi − x ) − ( yi − y ))2 .ëÛÏχ Í‚‡‰‡ÚÓ‚ ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ‡ÒÒÚÓflÌËÈ èÂÌÓÛÁ‡ ‡‚̇ Í‚‡‰‡ÚÛ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl.ãÓÂ̈‚ÒÍÓ ‡ÒÒÚÓflÌËÂãÓÂ̈‚ÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n , ÓÔ‰ÂÎÂÌÌÓ ͇Í∑ ln(1+ | xi − yi |).Ö‚ÍÎË‰Ó‚Ó ‰‚Ó˘ÌÓ ‡ÒÒÚÓflÌËÂÖ‚ÍÎË‰Ó‚Ó ‰‚Ó˘ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑(1x i > 0 − 1yi > 0 )2 .260ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂÖ‚ÍÎË‰Ó‚Ó Ò‰Ì ˆÂÌÁÛËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂÖ‚ÍÎË‰Ó‚Ó Ò‰Ì ˆÂÌÁÛËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑( xi − yi )2.∑ 1x 2 + y 2 ≠ 0iiçÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌËÂçÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í|| x − y || p|| x || p + || y || p.Ö‰ËÌÒÚ‚ÂÌÌ˚Ï ˆÂÎ˚Ï ˜ËÒÎÓÏ , ‰Îfl ÍÓÚÓÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÚ¸ p = 2.
ÅÓΠÚÓ„Ó, Í‡Í ÔÓ͇Á‡ÌÓ ‚ [Yian91], ‰Îfl β·˚ı|| x − y ||2a, b > 0 ‡ÒÒÚÓflÌËÂfl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ.a + b(|| x ||2 + || y ||2 )ê‡ÒÒÚÓflÌË ä·͇ê‡ÒÒÚÓflÌË ä·͇ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1 x − y 2ii ∑ |||nxy+ii | 1/ 2.ê‡ÒÒÚÓflÌË åË·ê‡ÒÒÚÓflÌË åË· (ËÎË Ë̉ÂÍÒ åË·) – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑( xi − yi − xi +1 + yi +1 )2 .1≤ i ≤ n − 1ê‡ÒÒÚÓflÌË ïÂÎÎË̉ʇê‡ÒÒÚÓflÌË ïÂÎÎË̉ʇ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í x2 ∑ i − xyi y 2(ÒÏ. åÂÚË͇ ïÂÎÎË̉ʇ, „Î. 14).à̉ÂÍÒ ‡ÒÒӈˇˆËË ì‡ÈÚÚÂ͇ ÓÔ‰ÂÎflÂÚÒfl ͇Í1 xi yi∑ − .2 xyëËÏÏÂÚ˘̇fl 2 -χëËÏÏÂÚ˘̇fl 2 -χ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í∑2x + y xi yi − =n( xi + yi ) xyx+y∑ n( x ⋅ y )2 ⋅( xi y − yi x )2.xi + yiëËÏÏÂÚ˘ÂÒÍÓ 2 -‡ÒÒÚÓflÌËÂëËÏÏÂÚ˘ÂÒÍÓ 2 -‡ÒÒÚÓflÌË (ËÎË ıË-‡ÒÒÚÓflÌËÂ) ÂÒÚ¸ ‡ÒÒÚÓflÌË ÔÓ n ,É·‚‡ 17.
ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı261ÓÔ‰ÂÎÂÌÌÓ ͇Í∑2x + y xi yi − =n( xi + yi ) xy∑x + y ( xi y − yi x )2.⋅xi + yin( x ⋅ y )2ê‡ÒÒÚÓflÌË å‡ı‡Î‡ÌÓ·ËÒ‡ê‡ÒÒÚÓflÌË å‡ı‡Î‡ÌÓ·ËÒ‡ (ËÎË ÒÚ‡ÚËÒÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) – ‡ÒÒÚÓflÌË ̇n, ÓÔ‰ÂÎÂÌÌÓ ͇Í(det A)1 / n ( x − y) A −1 ( x − y)T .„‰Â Ä – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl χÚˈ‡ (Ó·˚˜ÌÓ ˝ÚÓ Ï‡Úˈ‡ ÍÓ‚‡Ë‡ÌÚÌÓÒÚË Ï‡Úˈ‡ ÍÓ̘ÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ËÁ n, ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÂÍÚÓÓ‚ ̇·Î˛‰ÂÌËfl) (ÒÏ. èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡, „Î. 14).17.3.
èéÑéÅçéëíà à êÄëëíéüçàü Ñãü ÅàçÄêçõï ÑÄççõïé·˚˜ÌÓ Ú‡ÍË ÔÓ‰Ó·ÌÓÒÚË s ËÏÂ˛Ú ÏÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ ÓÚ 0 ‰Ó 1 ËÎË ÓÚ –1 ‰Ó 1,1− s‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ‡ÒÒÚÓflÌËfl Ó·˚˜ÌÓ ‡‚Ì˚ 1 – s ËÎË.2èÓ‰Ó·ÌÓÒÚ¸ Äχ̇èÓ‰Ó·ÌÓÒÚ¸ Äχ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í2 | X∆Y |n − 2 | X∆Y |−1 =.nnèÓ‰Ó·ÌÓÒÚ¸ ê˝Ì‰‡èÓ‰Ó·ÌÓÒÚ¸ ê˝Ì‰‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ ëÓ͇·–å˘Â̇, ÔÓÒÚÓ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X∆Y |.n| X∆Y |̇Á˚‚‡ÂÚÒfl ‚‡Ë‡ÌÚÌÓÒÚ¸˛ (fl‚ÎflÂÚÒfl ·Ë̇n| X∆Y |Ì˚Ï ÒÎÛ˜‡ÂÏ Ò‰ÌÂÈ ‡ÁÌÓÒÚË ÏÂÊ‰Û ÔËÁ͇̇ÏË ôÂ͇ÌÓ‚ÒÍÓ„Ó) Ë 1 −ṅÁ˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ ÉÓ‚‡‡.ëÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇èÓ‰Ó·ÌÓÒÚ¸ 1 ëÓ͇·–ëÌËÒ‡èÓ‰Ó·ÌÓÒÚ¸ 1 ëÓ͇·–ëÌËÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í2 | X∆Y |.n + | X∆Y |èÓ‰Ó·ÌÓÒÚ¸ 2 ëÓ͇·–ëÌËc‡èÓ‰Ó·ÌÓÒÚ¸ 2 ëÓ͇·–ëÌËc‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y |.| X ∪ Y | + | X∆Y |262ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂèÓ‰Ó·ÌÓÒÚ¸ 3 ëÓ͇·–ëÌËc‡èÓ‰Ó·ÌÓÒÚ¸ 3 ëÓ͇·–ëÌËÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X∆Y |.| X∆Y |èÓ‰Ó·ÌÓÒÚ¸ ê‡ÒÒ·–ê‡ÓèÓ‰Ó·ÌÓÒÚ¸ ê‡ÒÒ·–ê‡Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y |.nèÓ‰Ó·ÌÓÒÚ¸ ëËÏÔÒÓ̇èÓ‰Ó·ÌÓÒÚ¸ ëËÏÔÒÓ̇ (ÔÓ‰Ó·ÌÓÒÚ¸ ÔÂÂÍ˚ÚËfl) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n ,ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y |.min{| X |,| Y |}èÓ‰Ó·ÌÓÒÚ¸ ŇÛ̇–Å·ÌÍÂèÓ‰Ó·ÌÓÒÚ¸ ŇÛ̇–Å·ÌÍ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y |.max{| X |,| Y |}èÓ‰Ó·ÌÓÒÚ¸ êӉʇ–í‡ÌËÏÓÚÓèÓ‰Ó·ÌÓÒÚ¸ êӉʇ–í‡ÌËÏÓÚÓ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X∆Y |.n + | X∆Y |èÓ‰Ó·ÌÓÒÚ¸ î˝ÈÒ‡èÓ‰Ó·ÌÓÒÚ¸ îÂÈÚ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩ Y | + | X∆Y |.2nèÓ‰Ó·ÌÓÒÚ¸ í‚ÂÒÍÓ„ÓèÓ‰Ó·ÌÓÒÚ¸ í‚ÂÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y |.a | X∆Y | + b | X ∩ Y |é̇ ÒÚ‡ÌÓ‚ËÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ, ÔÓ‰Ó·ÌÓÒÚ¸˛ чÈÒ‡ Ë (‰Îfl ·Ë̇ÌÓ„Ó1ÒÎÛ˜‡fl) ÔÓ‰Ó·ÌÓÒÚ¸˛ 1 äÛθ˜ËÌÒÍÓ„Ó ‰Îfl ( a, b) = (1, 1), , 1 Ë (1, 0) ÒÓÓÚ‚ÂÚ2 ÒÚ‚ÂÌÌÓ.èÓ‰Ó·ÌÓÒÚ¸ Éӂ‡–ãÂʇ̉‡èÓ‰Ó·ÌÓÒÚ¸ ÉÓÛ˝‡–ãÂʇ̉‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X∆Y || X∆Y |=.a | X∆Y | + | X∆Y | n + ( a − 1) | X∆Y |263É·‚‡ 17.
ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ıèÓ‰Ó·ÌÓÒÚ¸ Ä̉·„‡èÓ‰Ó·ÌÓÒÚ¸ Ä̉·„‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ 4 ëÓ͇·–ëÌËc‡) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇{0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y | 11 | X ∪Y | 11 .+++ | X | | Y | | X | | Y |44Q ÔÓ‰Ó·ÌÓÒÚ¸ ûÎÂQ ÔÓ‰Ó·ÌÓÒÚ¸ ûΠ– ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X |.| X ∩Y |⋅| X ∪Y | + | X \ Y |⋅|Y \ X |Y ÔÓ‰Ó·ÌÓÒÚ¸ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌÓÒÚË ûÎÂY ÔÓ‰Ó·ÌÓÒÚ¸ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌÓÒÚË ûΠ– ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩ Y | ⋅| X ∪ Y | − | X \ Y | ⋅ | Y \ X || X ∩Y |⋅| X ∪Y | + | X \ Y |⋅|Y \ X |.èÓ‰Ó·ÌÓÒÚ¸ ‰ËÒÔÂÒËËèÓ‰Ó·ÌÓÒÚ¸ ‰ËÒÔÂÒËË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X |.n2 ÔÓ‰Ó·ÌÓÒÚ¸ èËÒÓ̇ ÔÓ‰Ó·ÌÓÒÚ¸ èËÒÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X || X |⋅| X |⋅|Y |⋅|Y |.èÓ‰Ó·ÌÓÒÚ¸ 2 Éӂ‡èÓ‰Ó·ÌÓÒÚ¸ 2 Éӂ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ 5 ëÓ͇·–ëÌËÒ‡) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1)n ,ÓÔ‰ÂÎÂÌ̇fl ͇Í| X ∩Y |⋅| X ∪Y || X |⋅| X |⋅|Y |⋅|Y |.ê‡ÁÌÓÒÚ¸ Ó·‡ÁÓ‚ê‡ÁÌÓÒÚ¸ Ó·‡ÁÓ‚ – ‡ÒÒÚÓflÌË ̇ {0, 1}n , ÓÔ‰ÂÎÂÌÌÓ ͇Í4 | X \ Y |⋅|Y / X |.n2Q0-‡ÁÌÓÒÚ¸Q0-‡ÁÌÓÒÚ¸ – ‡ÒÒÚÓflÌË ̇ {0, 1} n , ÓÔ‰ÂÎÂÌÌÓ ͇Í| X \ Y |⋅|Y / X |.| X ∩Y |⋅| X ∪Y |264ó‡ÒÚ¸ IV.