Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 42
Текст из файла (страница 42)
ÑÎflÒÚÓÍ x = x 1 …xm Ë y = y 1 …yn Ó̇ ‡‚̇ m + n – 2LCS(x, y), „‰Â ÔÓ‰Ó·ÌÓÒÚ¸ LCS(x, y), –‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Îfl ı Ë Û.ê‡ÒÒÚÓflÌË هÍÚÓ‡ ̇ W() ÓÔ‰ÂÎflÂÚÒfl Í‡Í m + n – 2LCS(x, y), „‰Â ÔÓ‰Ó·ÌÓÒÚ¸LCS(x, y) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÒÚÓÍË (Ù‡ÍÚÓ‡) ‰Îfl ı Ë Û.åÂÚË͇ Ò‚ÓÔ‡åÂÚË͇ Ò‚ÓÔ‡ – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆË˛ Ò‚ÓÔ‡ ÒËÏ‚ÓÎÓ‚.åÂÚË͇ ÏÛθÚËÏÌÓÊÂÒÚ‚‡åÂÚËÍÓÈ ÏÛθÚËÏÌÓÊÂÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ W(), ÓÔ‰ÂÎflÂχfl ͇Ímax{| X – Y |, | Y – X |}‰Îfl β·˚ı ÒÚÓÍ ı Ë Û, „‰Â ï , Y – ÏÛθÚËÏÌÓÊÂÒÚ‚‡ ÒËÏ‚ÓÎÓ‚ ÒÚÓÍ ı, Û,ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.182ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂåÂÚË͇ χÍËÓ‚ÓÍËåÂÚËÍÓÈ Ï‡ÍËÓ‚ÍË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ W() ([EhHa88]), ÓÔ‰ÂÎÂÌ̇fl ͇Íln 2 ((diff( y, x ) + 1) (diff( y, x ) + 1))‰Îfl β·˚ı ÒÚÓÍ x = x1…xm Ë y = y 1 …yn, „‰Â diff(x, y) – ÏËÌËχθÌ˚È ‡ÁÏ | M |ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ {1,…, m}, Ú‡ÍÓ„Ó ˜ÚÓ Î˛·‡fl ÔÓ‰ÒÚÓ͇ ı, Ì ÒÓ‰Âʇ˘‡fl x i Òi ∈ M, fl‚ÎflÂÚÒfl ÔÓ‰ÒÚÓÍÓÈ Û.ÑÛ„ÓÈ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎÂÌÌÓÈ ‚ [EhHa88], fl‚ÎflÂÚÒflln2 (diff(x, y) + diff(y, x) + 1).ê‡ÒÒÚÓflÌË ÔÂÓ·‡ÁÓ‚‡ÌËflê‡ÒÒÚÓflÌËÂÏ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡W() (Ç‡Â Ë ‰., 1999), ÔÓÎÛ˜ÂÌÌÓ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ÍÓÔËÓ‚‡ÌËfl, ‡ÌÚËÍÓÔËÓ‚‡ÌËfl Ë ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl ÔÓ‰ÒÚÓÍ.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ˆÂÌÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û ÔÓÒ‰ÒÚ‚ÓÏ ˝ÚËıÓÔ‡ˆËÈ, „‰Â ˆÂ̇ ͇ʉÓÈ ÓÔ‡ˆËË – ‰ÎË̇  ÓÔËÒ‡ÌËfl. í‡Í, ̇ÔËÏÂ, ‰ÎflÓÔËÒ‡ÌËfl ÍÓÔËÓ‚‡ÌËfl ÌÂÓ·ıÓ‰ËÏ ·Ë̇Ì˚È ÍÓ‰, ÚÓ˜ÌÓ ÓÔ‰ÂÎfl˛˘ËÈ ÚËÔÓÔ‡ˆËË, ÒÏ¢ÂÌË ÏÂÒÚÓÔÓÎÓÊÂÌËfl ÔÓ‰ÒÚÓÍ ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡ ‚ ı Ë Û Ë‰ÎËÌÛ Ò‡ÏÓÈ ÔÓ‰ÒÚÓÍË. äÓ‰ÓÏ ‚ÒÚ‡‚ÍË ‰ÓÎÊÂÌ ÓÔ‰ÂÎflÚ¸ ÚËÔ ÓÔ‡ˆËË, ‰ÎËÌÛÔÓ‰ÒÚÓÍË Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÔÓ‰ÒÚÓÍË.ê‡ÒÒÚÓflÌË ÌÓχÎËÓ‚‡ÌÌÓÈ ËÌÙÓχˆËËê‡ÒÒÚÓflÌË ÌÓχÎËÁÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË d ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl ̇W({0, 1}) ([LCLM04]), Á‡‰‡Ì̇fl ͇Ímax{K ( x | y ∗ ), K ( y | x ∗ )}max{K ( x ), K ( y)}‰Îfl ͇ʉ˚ı ‰‚Ûı ·Ë̇Ì˚ı ÒÚÓÍ ı Ë Û.
á‰ÂÒ¸ ‰Îfl ·Ë̇Ì˚ı ÒÚÓÍ u Ë v, u* fl‚ÎflÂÚÒfl͇ژ‡È¯ÂÈ ·Ë̇ÌÓÈ ÔÓ„‡ÏÏÓÈ ‰Îfl ‚˚˜ËÒÎÂÌËfl u ̇ ÔÓ‰ıÓ‰fl˘ÂÈ, Ú.Â. ËÒÔÓθÁÛ˛˘ÂÈ í¸˛ËÌ„-ÔÓÎÌ˚È flÁ˚Í ùÇå, ÒÎÓÊÌÓÒÚ¸ ÔÓ äÓÎÏÓ„ÓÓ‚Û (ËÎË ‡Î„ÓËÚÏ˘ÂÒ͇fl ˝ÌÚÓÔËfl) K(u) ÂÒÚ¸ ‰ÎË̇ u* (ÓÍÓ̘‡ÚÂθÌÓ ÒʇÚ˚È ‚‡Ë‡ÌÚ u ) ËK (u | v) – ‰ÎË̇ ͇ژ‡È¯ÂÈ ÔÓ„‡ÏÏ˚ ‚˚˜ËÒÎÂÌËfl u, ÂÒÎË v ‰‡ÌÓ Í‡Í ‚ÒÔÓÏÓ„‡ÚÂθÌ˚È ‚‚Ó‰.îÛÌ͈Ëfl d(x, y) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÂÁ̇˜ËÚÂθÌÓ„Ó ÓÒÚ‡ÚÓ˜ÌÓ„Ó˜ÎÂ̇: d(x, x) = O((K(x))–1) Ë d(x, z) – d(y, z) = O((max{K(x), K(y), K(z)}) –1) (Ò‡‚ÌËÚÂd(x, y) Ò ÏÂÚËÍÓÈ ËÌÙÓχˆËË (ËÎË ÏÂÚËÍÓÈ ˝ÌÚÓÔËË) H ( X | Y ) + H (Y | X ) ÏÂʉÛÒÚÓı‡ÒÚ˘ÂÒÍËÏË ËÒÚÓ˜ÌË͇ÏË ï Ë Y).çÓχÎËÁÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ÒʇÚËfl – ˝ÚÓ ‡ÒÒÚÓflÌËÂ Ì W({0, 1})‡ ([LCLM04],[BGLVZ98]), Á‡‰‡ÌÌÓ ͇ÍC( xy) − min{C( x ), C( y)}max{C( x ), C( y)}‰Îfl β·˚ı ·Ë̇Ì˚ı ÒÚÓÍ ı Ë Û, „‰Â C(x), C(y) Ë C(xy) ÓÁ̇˜‡˛Ú ‡ÁÏ ÒʇÚ˚ı(Ò ÔÓÏÓ˘¸˛ ÙËÍÒËÓ‚‡ÌÌÓ„Ó ÍÓÏÔÂÒÒÓ‡ ë, Ú‡ÍÓ„Ó Í‡Í gzip, bzip2 ËÎË PPMZ)ÒÚÓÍ ı, Û Ë Ëı ÒÓ˜ÎÂÌÂÌËfl ıÛ.
чÌÌÓ ‡ÒÒÚÓflÌË Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. ùÚÓ –‡ÔÔÓÍÒËχˆËfl ‡ÒÒÚÓflÌËfl ÌÓχÎËÁÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË. èÓ‰Ó·ÌÓ ‡ÒÒÚÓflÌËÂC( xy)1− .ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡ÌÓ Í‡ÍC( x ) + C( y ) 2É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı183èÓ‰Ó·ÌÓÒÚ¸ ùÌÚÓÌË–ï‡ÏχèÓ‰Ó·ÌÓÒÚ¸ ùÌÚÓÌË–ï‡Ïχ ÏÂÊ‰Û ·Ë̇ÌÓÈ ÒÚÓÍÓÈ x = x1…xn Ë ÏÌÓÊÂÒÚ‚ÓÏ Y ·Ë̇Ì˚ı ÒÚÓÍ y = y1…yn ÂÒÚ¸ χÍÒËχθÌÓ ˜ËÒÎÓ m, Ú‡ÍÓ ˜ÚÓ ‰Îfl ͇ʉӄÓm-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ÏÌÓÊÂÒÚ‚‡ {1,…, n} ÔÓ‰ÒÚÓ͇ ÒÚÓÍË ı, ÒÓ‰Âʇ˘‡fl ÚÓθÍÓ xiÒ i ∈ M, fl‚ÎflÂÚÒfl ÔÓ‰ÒÚÓÍÓÈ ÌÂÍÓÚÓÓÈ ÒÚÓÍË y ∈ Y, ÒÓ‰Âʇ˘ÂÈ ÚÓθÍÓ yi Ò i ∈ M.èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓÑÎfl ÒÚÓÍ x = x1…xm Ë y = y1…yn ̇ÁÓ‚ÂÏ ÒËÏ‚ÓÎ x i Ó·˘ËÏ Ò Û, ÂÒÎË xi = yi, „‰Âmin( m, n)|i− j|≤.
èÛÒÚ¸ x ′ = x1′ … x m′ – ‚Ò ÒËÏ‚ÓÎ˚ ÒÚÓÍË ı, Ó·˘ËÂ Ò Û (‚ ÚÓÏ ÊÂ2ÔÓfl‰ÍÂ, Í‡Í ÓÌË ÒÎÂ‰Û˛Ú ‚ ı), Ë ÔÛÒÚ¸ y ′ = y1′ … yn′ – ‡Ì‡Îӄ˘̇fl ÒÚÓ͇ ‰Îfl Û.èÓ‰Ó·ÌÓÒÚ¸ ÑÊ‡Ó Jaro(x, y) ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Í1 m ′ n ′ | {1 ≤ i ≤ min{m ′, n ′} : xi′ = yi′} | + +.3 m nmin{m ′, n ′}ùÚ‡ Ë ÔÓÒÎÂ‰Û˛˘Ë ‰‚ ÔÓ‰Ó·ÌÓÒÚË ËÒÔÓθÁÛ˛ÚÒfl Ò‚flÁË ‰ÓÍÛÏÂÌÚ‡ˆËË.èÓ‰Ó·ÌÓÒÚ¸ ÑʇӖìËÌÍ·èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓìËÌÍ· ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Ímax{4, LCP( x, y)}Jaro( x, y) +(1 − Jaro( x, y)),10„‰Â Jaro(x, y) – ÔÓ‰Ó·ÌÓÒÚ¸ ÑÊ‡Ó Ë LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ·Óθ¯Ó„Ó Ó·˘Â„ÓÔÂÙËÍÒ‡ ‰Îfl ı Ë Û.èÓ‰Ó·ÌÓÒÚ¸ q-„‡ÏÏ˚èÓ‰Ó·ÌÓÒÚ¸ q-„‡ÏÏ˚ ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl ͇Íq( x, y) + q( y, x ),2„‰Â q(x, y) – ˜ËÒÎÓ ÔÓ‰ÒÚÓÍ ‰ÎËÌ˚ q ‚ ÒÚÓÍ Û, ÍÓÚÓ˚ ڇÍÊ ÔÓfl‚Îfl˛ÚÒfl ͇ÍÔÓ‰ÒÚÓÍË ‚ ı, ‰ÂÎÂÌÌÓ ̇ ÍÓ΢ÂÒÚ‚Ó ‚ÒÂı ÔÓ‰ÒÚÓÍ ‰ÎËÌ˚ q ‚ Û.ùÚ‡ ÔÓ‰Ó·ÌÓÒÚ¸ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÔÓ‰Ó·ÌÓÒÚÂÈ Ì‡ ÓÒÌӂ χÍÂÓ‚, Ú.Â.Ú‡ÍËı, Í ÍÓÚÓ˚Ï ÔËÏÂÌËÏÓ ÓÔ‰ÂÎÂÌË χÍÂÓ‚ (ËÁ·‡ÌÌ˚ı ÔÓ‰ÒÚÓÍ ËÎËÒÎÓ‚).
á‰ÂÒ¸ χÍÂ˚ – ˝ÚÓ q-„‡ÏÏ˚, Ú.Â. ÔÓ‰ÒÚÓÍË ‰ÎËÌ˚ q. èËÏÂÓÏ ‰Û„ËıÔÓ‰Ó·ÌÓÒÚÂÈ Ì‡ ÓÒÌӂ χÍÂÓ‚ ̇ ÒÚÓ͇ı, ËÒÔÓθÁÛÂÏ˚ı ‚ Ò‚flÁË ‰ÓÍÛÏÂÌÚ‡ˆËË,fl‚Îfl˛ÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ Ó·˙‰ËÌÂÌËfl ܇Í͇‰‡ Ë TF-IDF (‚‡Ë‡ÌÚ ÔÓ‰Ó·ÌÓÒÚËÍÓÒËÌÛÒ‡). íËÔÓ‚ÓÈ ÏÂÚËÍÓÈ, ÓÒÌÓ‚‡ÌÌÓÈ Ì‡ ÒÎÓ‚‡Â ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë yfl‚ÎflÂÚÒfl | D(x)∆D(y) |, „‰Â D(z) Ó·ÓÁ̇˜‡ÂÚ ÔÓÎÌ˚È ÒÎÓ‚‡¸ ÒÚÓÍË z, Ú.Â. ÏÌÓÊÂÒÚ‚Ó‚ÒÂı  ÔÓ‰ÒÚÓÍ.åÂÚË͇ ÔÂÙËÍÒ–ï˝ÏÏËÌ„‡åÂÚË͇ ÔÂÙËÍÒ–ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1…ynÓÔ‰ÂÎflÂÚÒfl ͇Í(max{m, n} – min{m, n}) + |{1 ≤ i ≤ min{m, n}: xi ≠ yi}|.ÇÁ‚¯ÂÌÌÓ ê‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ dwH(x, y) ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y == y 1 …yn ÓÔ‰ÂÎflÂÚÒfl ͇Ím∑ d( xi , yi ).i =1184ó‡ÒÚ¸ III.
ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂç˜ÂÚÍÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ÖÒÎË ( , d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ Ì˜ÂÚÍËÏ ‡ÒÒÚÓflÌËÂÏ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1…ym ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌˉ‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W(), ÔÓÎÛ˜ÂÌÌÓ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl, ͇ʉ‡fl Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ˆÂÌÓÈ q > 0, Ë Ò‰‚˄ӂ ÒËÏ‚ÓÎÓ‚ (Ú.Â. ÔÂÂÏ¢ÂÌË ӉÌÓÒËÏ‚ÓθÌ˚ı ÔÓ‰ÒÚÓÍ), „‰Â ˆÂ̇ Á‡ÏÂÌ˚ i ̇ j ÂÒÚ¸ÙÛÌ͈Ëfl f(| i – j |).
ùÚÓ ‡ÒÒÚÓflÌË – ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı‚ Û Ò ÔÓÏÓ˘¸˛ Û͇Á‡ÌÌ˚ı ÓÔ‡ˆËÈ. ÅÛͯÚÂÈÌ, äÎÂÈÌ Ë ê‡ËÚ‡, ÍÓÚÓ˚ ‚ 2001 „.‚‚ÂÎË ˝ÚÓ ‡ÒÒÚÓflÌË ‰Îfl ÔÓˆÂÒÒÓ‚ ‚˚·ÓÍË ËÌÙÓχˆËË, ‰Ó͇Á‡ÎË, ˜ÚÓÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎË f – ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘‡fl ‚Ó„ÌÛÚ‡fl ÙÛÌ͈Ëfl̇ ÏÌÓÊÂÒÚ‚Â ˆÂÎ˚ı ˜ËÒÂÎ, ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ÚÓθÍÓ ‚ ÚӘ͠0. ëÎÛ˜‡È f(| i – j |) = C| i – j |, „‰Â C > 0 – ÍÓÌÒÚ‡ÌÚ‡ Ë | i – j | – Ò‰‚Ë„ ‚Ó ‚ÂÏÂÌË,ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ ÇËÍÚÓ‡–èÛÔÛ‡ ‰Îfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‚ÒÔÎÂÒÍÓ‚(ÒÏ.
„Î. 23).Ç 2003 „. ê‡ÎÂÒÍÛ Ô‰ÎÓÊËÎ ‰Îfl ‚˚·ÓÍË Ó·‡ÁÓ‚ ¢ ӉÌÓ Ì˜ÂÚÍÓ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ ̇ m. ê‡ÒÒÚÓflÌË ê‡ÎÂÒÍÛ ÏÂÊ‰Û ‰‚ÛÏfl ÒÚÓ͇ÏË x = x1 …xmË y = y1…ym ÂÒÚ¸ ̘ÂÚÍÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ ‡ÁÌÓÒÚÌÓ„Ó Ì˜ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡Dα(x, y) („‰Â α – Ô‡‡ÏÂÚ) Ò ÙÛÌ͈ËÂÈ ÔË̇‰ÎÂÊÌÓÒÚË2µ i = 1 − e − α ( x i − yi ) , 1 ≤ i ≤ m.íÓ˜ÌÓ ÍÓ‰Ë̇θÌÓ ˜ËÒÎÓ Ì˜ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ D α(x, y), ‡ÔÔÓÍÒËÏËÛ˛˘ÂÂ1Â„Ó Ì˜ÂÚÍÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ ‡‚ÌÓ 1 ≤ i ≤ m : µ i > .2åÂÚË͇ çˉÎχ̇–ÇÛ̯‡–ëÂÎÎÂÒ‡ÖÒÎË ( , d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚËÍÓÈ çˉÎχ̇–ÇÛ̯‡–ëÂÎÎÂÒ‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ ã‚Â̯ÚÂÈ̇ Ò ˆÂÌÓÈ, ÏÂÚËÍÓÈ Ó·˘Â„Ó ÒÓ‚Ï¢ÂÌËfl)̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W() ([NeWu70]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl, ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl, ͇ʉ‡fl ÔÓÒÚÓflÌÌÓÈ ˆÂÌ˚ q > 0Ë Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚, „‰Â d(i, j) fl‚ÎflÂÚÒfl ˆÂÌÓÈ Á‡ÏÂ̇ i ̇ j.
чÌ̇fl ÏÂÚË͇ ÂÒÚ¸ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û Ò ÔËÏÂÌÂÌËÂÏ ˝ÚËı ÓÔ‡ˆËÈ.ù͂˂‡ÎÂÌÚÌÓ, Ó̇ ‡‚̇min{dwH(x * , y*)},„‰Â x*, y* – ÒÚÓÍË ‰ÎËÌ˚ k, k ≥ max{m, n} ̇‰ ‡ÎÙ‡‚ËÚÓÏ ∗ = ∪{∗}, Ú‡ÍË ˜ÚÓÔÓÒΠۉ‡ÎÂÌËfl ‚ÒÂı ÌÓ‚˚ı ÒËÏ‚ÓÎÓ‚ ∗ ÒÚÓÍË x * Ë y* ÒÓ͇˘‡˛ÚÒfl ‰Ó ı Ë ÛÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. á‰ÂÒ¸ dwH(x * , y*) ÂÒÚ¸ ‚Á‚¯ÂÌÌÓ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂʉÛx* Ë y * Ò ‚ÂÒÓÏ d ( xi∗ , yi∗ ) = q (Ú.Â. ÓÔ‡ˆËÂÈ Â‰‡ÍÚËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ‚ÒÚ‡‚͇ۉ‡ÎÂÌËÂ), ÂÒÎË Ó‰Ì‡ ËÁ xi∗ , yi∗ fl‚ÎflÂÚÒfl ∗ Ë d ( xi∗ , yi∗ ) = d (i, j ), Ë̇˜Â.ê‡ÒÒÚÓflÌË ÉÓÚÓ–ëÏËÚ‡–ìÓÚÂχ̇ (ËÎË ‡ÒÒÚÓflÌË ÒÚÓÍË Ò ‡ÙÙËÌÌ˚ÏËÔÓÔÛÒ͇ÏË) fl‚ÎflÂÚÒfl ·ÓΠÒÔˆˇÎËÁËÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ Ò ˆÂÌÓÈ (ÒÏ.
[Goto82]).é̇ ÓÚ·‡Ò˚‚‡ÂÚ ÌÂÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ˜‡ÒÚË ‚ ̇˜‡ÎÂ Ë ÍÓ̈ ÒÚÓÍ ı Ë Û Ë ‚‚Ó‰ËÚ‰‚ ˆÂÌ˚ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl Ó‰ÌÛ ‰Îfl ËÌˈËËÓ‚‡ÌËfl ‡ÙÙËÌÌÓ„Ó ÔÓÔÛÒ͇ (ÌÂÔÂ˚‚Ì˚È ·ÎÓÍ ÓÔ‡ˆËÈ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl) Ë ‰Û„Û˛ (ÏÂ̸¯Û˛) ‰Îfl ‡Ò¯ËÂÌËflÔÓÔÛÒ͇.185É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ıåÂÚË͇ å‡ÚË̇åÂÚË͇ å‡ÚË̇ da ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1 …yn ÓÔ‰ÂÎflÂÚÒfl ͇Í| 2 −m − 2 −n | +max{m, n}∑t =1atsup | k ( z, x ) − k ( z, y) |,| |t z„‰Â z – β·‡fl ÒÚÓ͇ ‰ÎËÌ˚ t, k(z, x) – fl‰Ó å‡ÚË̇ ([MaSt99]) χÍÓ‚ÒÍÓÈ ˆÂÔËM = {Mt }t∞= 0 , Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ a ∈{a = {ai}t∞= 0 : at > 0,∞∑ at < ∞ – Ô‡‡ÏÂÚ‡.t =1åÂÚË͇ Å˝‡åÂÚËÍÓÈ Å˝‡ ̇Á˚‚‡ÂÚÒfl ÛθڇÏÂÚË͇ ÏÂÊ‰Û ÍÓ̘Ì˚ÏË ËÎË ·ÂÒÍÓ̘Ì˚ÏË ÒÚÓ͇ÏË x = x 1 …xm...
Ë y = y1…yn..., ÓÔ‰ÂÎflÂχfl ‰Îfl x ≠ y ͇Í1,1 + LGCP( x, y)„‰Â LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û.é·Ó·˘ÂÌ̇fl ÏÂÚË͇ ä‡ÌÚÓ‡é·Ó·˘ÂÌÌÓÈ ÏÂÚËÍÓÈ ä‡ÌÚÓ‡ ̇Á˚‚‡ÂÚÒfl ÛθڇÏÂÚË͇ ÏÂÊ‰Û ·ÂÒÍÓ̘Ì˚ÏË ÒÚÓ͇ÏË x = x1…xm... Ë y = y1…yn..., ÓÔ‰ÂÎflÂχfl ‰Îfl x ≠ y ͇ÍaLCP(x,y) ,„‰Â ‡ – ÙËÍÒËÓ‚‡ÌÌÓ ˜ËÒÎÓ ËÁ ËÌÚ‚‡Î‡ (0,1), ‡ LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó‰ÎËÌÌÓ„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û.1чÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï. ÑÎfl ÒÎÛ˜‡fl a =21ÏÂÚË͇ LCP( x , y ) ‡ÒÒχÚË‚‡Î‡Ò¸ ̇ Í·ÒÒ˘ÂÒÍÓÏ Ù‡ÍڇΠ(ÒÏ.
„Î. 1) ‰Îfl [0,1] –2ÏÌÓÊÂÒÚ‚Â ä‡ÌÚÓ‡ (ÒÏ. åÂÚË͇ ä‡ÌÚÓ‡, „Î. 18).åÂÚË͇ ÑÛÌ͇̇ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ï ‚ÒÂı ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘Ëı ·ÂÒÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {xn}n ÔÓÎÓÊËÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ. éÔ‰ÂÎËÏ N(n, x) Í‡Í ˜ËÒÎÓ˝ÎÂÏÂÌÚÓ‚ ‚ x = {x n }n , ÍÓÚÓ˚ ÏÂ̸¯Â n , Ë δ(x) Í‡Í ÔÎÓÚÌÓÒÚ¸ ı, Ú.Â.N (n, x )δ( x ) = lim. èÛÒÚ¸ Y – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï, ÒÓÒÚÓfl˘Â ËÁ ‚ÒÂı ÔÓÒΉӂ‡n →∞nÚÂθÌÓÒÚÂÈ x = {xn }n , ‰Îfl ÍÓÚÓ˚ı δ(x) < ∞.åÂÚËÍÓÈ ÑÛÌ͇̇ fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ Y, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl x ≠ y ͇Í1+ | δ( x ) − δ( y) |,1 + LCP( x, y)„‰Â LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û. åÂÚ˘ÂÒÍÓÂÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÑÛÌ͇̇.186ó‡ÒÚ¸ III.
ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ11.2. êÄëëíéüçàü çÄ èÖêÖëíÄçéÇäÄïèÂÂÒÚ‡ÌÓ‚ÍÓÈ (ËÎË ‡ÌÊËÓ‚‡ÌËÂÏ) ̇Á˚‚‡ÂÚÒfl β·‡fl ÒÚÓ͇ x1…xn, „‰Â xi –‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1…, n}; ÔÂÂÒÚ‡Ìӂ͇ ÒÓ Á̇ÍÓÏ – β·‡fl ÒÚÓ͇x1…xn, „‰Â | xi | – ‡Á΢Ì˚ ˜ËÒ· ËÁ ÏÌÓÊÂÒÚ‚‡ {1…, n}. é·ÓÁ̇˜ËÏ ˜ÂÂÁ(Symn , ⋅, id) „ÛÔÔÛ ‚ÒÂı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÏÌÓÊÂÒÚ‚‡ {1…, n}, „‰Â id – ÚÓʉÂÒÚ‚ÂÌÌÓÂÓÚÓ·‡ÊÂÌËÂ.