Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 40
Текст из файла (страница 40)
åÂÚËÍÓÈ ÌÓÏ˚ ÔÂÂÒÚ‡ÌÓ‚ÓÍ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (SymX , ⋅, id) ‚ÒÂı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÏÌÓÊÂÒÚ‚‡ X (id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÓÔ‰ÂÎÂÌ̇fl ͇Í|| f ⋅ g −1 ||Sym ,„‰Â ÌÓχ „ÛÔÔ˚ || ⋅ ||Sym ̇ Sym X Á‡‰‡ÂÚÒfl Í‡Í || f ||Sym = max d ( x, f ( x )).x ∈XåÂÚË͇ ‰‚ËÊÂÌËÈèÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë p ∈ X – ÙËÍÒËÓ‚‡ÌÌ˚È˝ÎÂÏÂÌÚ ËÁ ï.åÂÚËÍÓÈ ‰‚ËÊÂÌËÈ (ÒÏ. [Buse55]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „ÛÔÔ (Ω, ⋅, id) ‚ÒÂı‰‚ËÊÂÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) (id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÓÔ‰ÂÎÂÌ̇fl ͇Ísup d ( f ( x ), g( x )) ⋅ e − d ( p, x )x ∈X‰Îfl β·˚ı f, g ∈ Ω (ÒÏ. ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ÏÌÓÊÂÒÚ‚, „Î.
3). ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó(X, d) Ó„‡Ì˘ÂÌÓ, ÚÓ ÔÓ‰Ó·ÌÛ˛ ÏÂÚËÍÛ Ì‡ Ω ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ͇Ísup d ( f ( x ), g( x )).x ∈XÑÎfl ÔÓÎÛÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÓÎÛÏÂÚËÍÛ ‰‚ËÊÂÌËÈ Ì‡ (Ω, ⋅, id)ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ͇Íd(f(p), g(p)).èÓÎÛÏÂÚË͇ Ó·˘ÂÈ ÎËÌÂÈÌÓÈ „ÛÔÔ˚èÛÒÚ¸ – ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌӠ̉ËÒÍÂÚÌÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÎÂ.
èÛÒÚ¸( , ⋅ ) , n ≥ 2 – ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ . èÛÒÚ¸ || ⋅ || –nnÓÔ‡ÚÓ̇fl ÌÓχ, ‡ÒÒÓˆËËÓ‚‡Ì̇fl Ò ÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ( , ⋅ ) , Ë ÔÛÒÚ¸ GL(n, ) – Ó·˘‡fl ÎËÌÂÈ̇fl „ÛÔÔ‡ ̇‰ . íÓ„‰‡ ÙÛÌ͈Ëfl | ⋅ |nop:nGL(n, ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í | g |op = sup{| ln || g |||, | ln || g −1 |||}, fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ̇ GL(n, ).èÓÎÛÏÂÚË͇ Ó·˘ÂÈ ÎËÌÂÈÌÓÈ „ÛÔÔ˚ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ „ÛÔÔ GL(n , ),Á‡‰‡Ì̇fl ͇Í| g ⋅ h −1 |op .é̇ fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ, ÍÓÚÓ‡fl ‰ËÌÒÚ‚ÂÌ̇ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „Û·ÓÈ ËÁÓÏÂÚËË, ÔÓÒÍÓθÍÛ Î˛·˚ ‰‚ ÌÓÏ˚ ̇ fl‚Îfl˛ÚÒfl ·ËÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË.174ó‡ÒÚ¸ III.
ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂèÓÎÛÏÂÚË͇ Ó·Ó·˘ÂÌÌÓ„Ó ÚÓ‡èÛÒÚ¸ (T, ⋅, e) – Ó·Ó·˘ÂÌÌ˚È ÚÓ, Ú.Â. ÚÓÔÓÎӄ˘ÂÒ͇fl „ÛÔÔ‡, ÍÓÚÓ‡fl ËÁÓÏÓÙ̇ ÔflÏÓÏÛ ÔÓËÁ‚‰ÂÌ˲ n ÏÛθÚËÔÎË͇ÚË‚Ì˚ı „ÛÔÔ i∗ ÎÓ͇θÌÓ ÍÓχÍÚÌ˚ı̉ËÒÍÂÚÌ˚ı ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÎÂÈ i. íÓ„‰‡ ÒÛ˘ÂÒÚ‚ÛÂÚ ÒÓ·ÒÚ‚ÂÌÌ˚È ÌÂÔÂ˚‚Ì˚È „ÓÏÓÏÓÙÏËÁÏ v: T → n , ËÏÂÌÌÓ, v(x 1 ,…, x n ) = (v1 (x n )), „‰Â v1 : i∗ → fl‚Îfl˛ÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚ÏË ÌÂÔÂ˚‚Ì˚ÏË „ÓÏÓÏÓÙËÁχÏË ËÁ i∗ ‚ ‡‰‰ËÚË‚ÌÛ˛„ÛÔÔÛ , Á‡‰‡ÌÌ˚ÏË Í‡Í ÎÓ„‡ËÙÏ ‚‡Î˛‡ˆËË. ÇÒflÍËÈ ‰Û„ÓÈ ÒÓ·ÒÚ‚ÂÌÌ˚È ÌÂÔÂ˚‚Ì˚È „ÓÏÓÏÓÙËÁÏ v⬘: T → n ËÏÂÂÚ ‚ˉ v⬘ = α ⋅ v Ò α ∈ GL(n, ). ÖÒÎË || ⋅ || fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ n, ÚÓ ÔÓÎÛ˜‡ÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Û˛ ÔÓÎÛÌÓÏÛ || x ||T =|| v( x ) || ̇ T.èÓÎÛÏÂÚË͇ Ó·Ó·˘ÂÌÌÓ„Ó ÚÓ‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ „ÛÔÔ (T, ⋅, e ), ÓÔ‰ÂÎÂÌ̇fl ͇Í|| xy −1 ||T = || v( xy −1 ) || = || v( x ) − v( y) || .åÂÚË͇ ÉÂÈÁÂ̷„‡èÛÒÚ¸ (H, ⋅, e) – Ô‚‡fl „ÂÈÁÂ̷„ӂ‡ „ÛÔÔ‡, Ú.Â.
„ÛÔÔ‡ ̇ ÏÌÓÊÂÒÚ‚Â H = ⊗ Ò „ÛÔÔÓ‚˚Ï Á‡ÍÓÌÓÏ x ⋅ y = ( z, t ) ⋅ (u, s) = ( z + u, t + s + 2( zu )) Ë Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ e = (0, 0). èÛÒÚ¸ | ⋅ |Heis – „ÂÈÁÂ̷„ӂ‡ ÌÓχ ̇ ç, ÓÔ‰ÂÎÂÌ̇fl ͇Í| x |Heis = | ( z, t ) |Heis = (| z |4 +t 2 )1 / 4 .åÂÚË͇ ÉÂÈÁÂ̷„‡ (ËÎË ÏÂÚË͇ ¯‡·ÎÓ̇, ÏÂÚË͇ äӇ̸Ë) dHeis ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ç, ÓÔ‰ÂÎÂÌ̇fl ͇Í| x −1 ⋅ y | H .ÑÛ„‡fl ÂÒÚÂÒÚ‚ÂÌ̇fl ÏÂÚË͇ ̇ (H, ⋅, e) – ÏÂÚË͇ ä‡ÌӖ䇇ÚÂÓ‰ÓË (ËÎË ë-ëÏÂÚË͇, ÍÓÌÚÓθ̇fl ÏÂÚË͇) d C , ÓÔ‰ÂÎflÂχfl Í‡Í ‚ÌÛÚÂÌÌflfl ÏÂÚËÍ‡Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ „ÓËÁÓÌڇθÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓÎÂÈ Ì‡ ç. åÂÚËÍË dHeis Ë dC1fl‚Îfl˛ÚÒfl ·ËÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË; ËÏÂÌÌÓ,dHeis ( x, y) ≤ dC ( x, y) ≤π≤ dHeis ( x, y).åÂÚËÍÛ ÉÂÈÁÂ̷„‡ ÏÓÊÌÓ Á‡‰‡Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡ β·ÓÈ „ÂÈÁÂ̷„ӂÓÈ „ÛÔÔ (H n , ⋅, e) Ò Hn = n ⊗ .åÂÚË͇ ÏÂÊ‰Û ËÌÚ‚‡Î‡ÏËèÛÒÚ¸ G – ÏÌÓÊÂÒÚ‚Ó ËÌÚ‚‡ÎÓ‚ [a, b] ËÁ .
åÌÓÊÂÒÚ‚Ó G Ó·‡ÁÛÂÚ ÔÓÎÛ„ÛÔÔ˚(G, +) Ë (G , ⋅) ÓÚÌÓÒËÚÂθÌÓ ÒÎÓÊÂÌËfl I + J = {x + y: x ∈ I, y ∈ J} Ë ÛÏÌÓÊÂÌËflI ⋅ J = {x ⋅ y: x ∈ I, y ∈ J} ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.åÂÚË͇ ÏÂÊ‰Û ËÌÚ‚‡Î‡ÏË – ÏÂÚË͇ ̇ G, Á‡‰‡Ì̇fl Í‡Í max{| I |, | J |} ‰Îfl‚ÒÂı I, J ∈ G, „‰Â ‰Îfl I = [a, b] ËÏÂÂÏ | I | = | a − b | .èÓÎÛÏÂÚË͇ ÍÓθˆ‡èÛÒÚ¸ (A, +, ⋅) – Ù‡ÍÚÓˇθÌÓ ÍÓθˆÓ, Ú.Â. ÍÓθˆÓÏ, ‚ ÍÓÚÓÓÏ ‡ÁÎÓÊÂÌË ̇ÏÌÓÊËÚÂÎË Â‰ËÌÒÚ‚ÂÌÌÓ. èÓÎÛÏÂÚËÍÓÈ ÍÓθˆ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â A\{0}, ÓÔ‰ÂÎflÂχfl ͇Íl.c.m.( x, y)ln,g.c.d .( x, y)„‰Â l.c.m.(x, y) – ̇ËÏÂ̸¯Â ӷ˘Â ͇ÚÌÓÂ Ë g.c.d.(x, y) – ̇˷Óθ¯ËÈ Ó·˘ËȉÂÎËÚÂθ ˝ÎÂÏÂÌÚÓ‚ x, y ∈ A\{0}.É·‚‡ 10.
ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â17510.2. åÖíêàäà çÄ ÅàçÄêçõï éíçéòÖçàüïÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R ̇ ÏÌÓÊÂÒÚ‚Â ï fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ X × X. éÌÓÔ‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ‰Û„ Ó„‡Ù‡ (X, R) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï.ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï (ÂÒÎË (x, y) ∈ R, ÚÓ(y, x) ∈ R), ÂÙÎÂÍÒË‚Ì˚Ï (‚Ò x, x) ∈ R Ë Ú‡ÌÁËÚË‚Ì˚Ï (ÂÒÎË (x, y), (y, z) ∈ R, ÚÓ(x, z) ∈ R), ̇Á˚‚‡ÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ËÎË ‡Á·ËÂÌËÂÏ (ï ̇ Í·ÒÒ˚˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË). ã˛·‡fl q-‡Ì‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x1,…, x n ), q ≥ 2 (Ú.Â.0 ≤ xi ≤ q – 1 ‰Îfl 1 ≤ i ≤ n) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡Á·ËÂÌ˲ {B0 ,…, bq–1} ÏÌÓÊÂÒÚ‚‡V, = {1,…, n}, „‰Â Bj = {1 ≤ i ≤ n: xi = j} – Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË.ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‡ÌÚËÒËÏÏÂÚ˘Ì˚Ï (ÂÒÎË (x, y), (y, x)∈ R, ÚÓ x = y), ÂÙÎÂÍÒË‚Ì˚Ï Ë Ú‡ÌÁËÚË‚Ì˚Ï, ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘Ì˚Ï ÔÓfl‰ÍÓÏ,‡ Ô‡‡ (X, R) ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. ó‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ R ̇ X Ú‡ÍÊ ӷÓÁ̇˜‡ÂÚÒfl Í‡Í p− Ò xp− y ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡p(x, y) ∈ R.
èÓfl‰ÓÍ − ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï, ÂÒÎË Î˛·˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ XÒ‡‚ÌËÏ˚, Ú.Â. x p− y ËÎË y p− x.ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p− ) ̇Á˚‚‡ÂÚÒfl ¯ÂÚÍÓÈ, ÂÒÎË Í‡Ê‰˚‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ L ӷ·‰‡˛Ú Ó·˙‰ËÌÂÌËÂÏ x ∨ y Ë ÔÂÂÒ˜ÂÌËÂÏ x ∧ y. ÇÒ‡Á·ËÂÌËfl ï Ó·‡ÁÛ˛Ú Â¯ÂÚÍÛ ËÁÏÂθ˜ÂÌ˲; Ó̇ fl‚ÎflÂÚÒfl ÔӉ¯ÂÚÍÓÈ Â¯ÂÚÍË(ÔÓ ‚Íβ˜ÂÌ˲) ‚ÒÂı ·Ë̇Ì˚ı ÓÚÌÓ¯ÂÌËÈ.ê‡ÒÒÚÓflÌË äÂÏÂÌËê‡ÒÒÚÓflÌË äÂÏÂÌË ÏÂÊ‰Û ·Ë̇Ì˚ÏË ÓÚÌÓ¯ÂÌËflÏË R1 Ë R2 ̇ ÏÌÓÊÂÒÚ‚Â ïÂÒÚ¸ ı˝ÏÏË̄ӂ‡ ÏÂÚË͇ | R1∆R2 | . .
éÌÓ ‚ 2 ‡Á‡ Ô‚˚¯‡ÂÚ ÏËÌËχθÌÓ ˜ËÒÎÓËÌ‚ÂÒËÈ Ô‡ ÒÏÂÊÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ËÁ ï, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ÔÓÎÛ˜ÂÌËfl R2 ËÁ R1 .ÖÒÎË R1 , R2 fl‚Îfl˛ÚÒfl ‡Á·ËÂÌËflÏË, ÚÓ ‡ÒÒÚÓflÌË äÂÏÂÌË ÒÓ‚Ô‡‰‡ÂÚ Ò ‡ÒÒÚÓfl| R ∆R |ÌËÂÏ åËÍË̇–óÂÌÓ„Ó Ë 1 − 1 2 fl‚ÎflÂÚÒfl Ë̉ÂÍÒÓÏ ê˝Ì‰‡.n(n − 1)ÖÒÎË ·Ë̇Ì˚ ÓÚÌÓ¯ÂÌËfl R1 , R2 fl‚Îfl˛ÚÒfl ÎËÌÂÈÌ˚ÏË ÔÓfl‰Í‡ÏË (ËÎË ‡ÌÊËÓ‚‡ÌËflÏË, ÔÂÂÒÚ‡Ìӂ͇ÏË) ̇ ÏÌÓÊÂÒÚ‚Â ï, ÚÓ ‡ÒÒÚÓflÌË äÂÏÂÌË ÒÓ‚Ô‡‰‡ÂÚ ÒÏÂÚËÍÓÈ ËÌ‚ÂÒËË Ì‡ ÔÂÂÒÚ‡Ìӂ͇ı.ê‡ÒÒÚÓflÌË чԇ·–äÂÔÍË ÏÂÊ‰Û ‡Á΢Ì˚ÏË Í‚‡ÁË„ÛÔÔ‡ÏË (X, +) Ë (X, ⋅)ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {( x, y) : x + y ≠ x ⋅ y} | .åÂÚËÍË ÏÂÊ‰Û ‡Á·ËÂÌËflÏËèÛÒÚ¸ ï – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó Ò ˜ËÒÎÓÏ ˝ÎÂÏÂÌÚÓ‚ n = | X | Ë ÔÛÒÚ¸ Ä, Ç – ÌÂÔÛÒÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ ï. èÛÒÚ¸ P X – ÏÌÓÊÂÒÚ‚Ó ‡Á·ËÂÌËÈ ï Ë P,Q ∈ P X .
èÛÒÚ¸ B1 ,…, B q – ·ÎÓÍË ‡Á·ËÂÌËfl ê, Ú.Â. ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËÂÒflÏÌÓÊÂÒÚ‚‡, Ú‡ÍË ˜ÚÓ X = B1 ∪ …∪ Bq , q ≥ 2. èÛÒÚ¸ P ∨ Q ÂÒÚ¸ Ó·˙‰ËÌÂÌË ê Ë Q,‡ P ∨ Q – ÔÂÂÒ˜ÂÌË ê Ë Q ‚ ¯ÂÚÍ ‡Á·ËÂÌËÈ ÏÌÓÊÂÒÚ‚‡ ï.ê‡ÒÒÏÓÚËÏ ÒÎÂ‰Û˛˘Ë ÓÔ‡ˆËË Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ‡Á·ËÂÌËflı:– ÔÓÔÓÎÌÂÌË ÔÂÓ·‡ÁÛÂÚ ‡Á·ËÂÌË ê ÏÌÓÊÂÒÚ‚‡ A\}B} ‚ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡Ä ÎË·Ó ‚Íβ˜ÂÌËÂÏ Ó·˙ÂÍÚÓ‚ ËÁ Ç ‚ ÌÂÍÓÚÓ˚È ·ÎÓÍ, ÎË·Ó ‚Íβ˜ÂÌËÂÏ Ò‡ÏÓ„Ó Ç ‚͇˜ÂÒÚ‚Â ÌÓ‚Ó„Ó ·ÎÓ͇;– Û‰‡ÎÂÌË ÔÂÓ·‡ÁÛÂÚ ‡Á·ËÂÌË ê ÏÌÓÊÂÒÚ‚‡ Ä ‚ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ A\{B}ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl Ó·˙ÂÍÚÓ‚ ËÁ Ç ËÁ Í‡Ê‰Ó„Ó ÒÓ‰Âʇ˘Â„Ó Ëı ·ÎÓ͇;– ‰ÂÎÂÌË ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„ÓÛ‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B ⊂ Bi, B ≠ Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç Í‡Í ÌÓ‚Ó„Ó ·ÎÓ͇;176ó‡ÒÚ¸ III.
ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍ– Ó·˙‰ËÌÂÌË ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B = Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç ‚ Bj („‰Â j ≠ i);– ÔÂÂÌÓÒ ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„ÓÛ‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B ⊂ Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç ‚ Bj („‰Â j ≠ i).éÔ‰ÂÎËÏ (ÒÏ., ̇ÔËÏÂ, [Day81]) ÔËÏÂÌËÚÂθÌÓ Í ‚˚¯ÂÛ͇Á‡ÌÌ˚Ï ÓÔ‡ˆËflÏ ÒÎÂ‰Û˛˘Ë ÏÂÚËÍË Â‰‡ÍÚËÓ‚‡ÌËfl ̇ PX:1) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ÔÓÔÓÎÌÂÌËÈ Ë Û‰‡ÎÂÌËÈ Â‰ËÌ˘Ì˚ı Ó·˙ÂÍÚÓ‚,ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q;2) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ, Ó·˙‰ËÌÂÌËÈ Ë ÔÂÂÌÓÒÓ‚ ‰ËÌ˘Ì˚ıÓ·˙ÂÍÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q;3) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ, Ó·˙‰ËÌÂÌËÈ Ë ÔÂÂÌÓÒÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q;4) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ Ë Ó·˙‰ËÌÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q; ËÏÂÌÌÓ, ÓÌÓ ‡‚ÌÓ | P | + | Q | −2 | P ∨ Q |;5) σ( P) + σ(Q) − 2σ( P ∧ Q), , „‰Â σ( P) =| Pi | (| Pi | −1);∑Pu ∈P6) e( P) + σ(Q) − 2e( P ∧ Q), „‰Â e( P) = log 2 n +∑Pi ∈P| Pi ||P |log 2 i .nnê‡ÒÒÚÓflÌË êÂ̸ ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˝ÎÂÏÂÌÚÓ‚, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏÓÔÂÂÏÂÒÚËÚ¸ ÏÂÊ‰Û ·ÎÓ͇ÏË ‡Á·ËÂÌËfl ê Ò ÚÂÏ, ˜ÚÓ·˚ ÔÂÓ·‡ÁÓ‚‡Ú¸ Â„Ó ‚ Q(ÒÏ.
ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡, „Î. 21 Ë ‚˚¯ÂÛ͇Á‡ÌÌÛ˛ ÏÂÚËÍÛ 2).10.3. åÖíêàäà êÖòÖíéäÇÓÁ¸ÏÂÏ ˜‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p− ). èÂÂÒ˜ÂÌË (ËÎË ËÌÙËÏÛÏ)x ∧ y (ÂÒÎË yj ÒÛ˘ÂÒÚ‚ÛÂÚ) ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ ı Ë Û fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ,Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÛÒÎӂ˲ x ∧ y p− x, y Ë z p− x ∧ y, ÂÒÎË z p− x, y.
Ä̇Îӄ˘Ì˚ÏÓ·‡ÁÓÏ Ó·˙‰ËÌÂÌË (ËÎË ÒÛÔÂÏÛÏ) x ∨ y (ÂÒÎË ÓÌÓ ÒÛ˘ÂÒÚ‚ÛÂÚ) fl‚ÎflÂÚÒfl‰ËÌÒÚ‚ÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Ú‡ÍËÏ ˜ÚÓ x, y p−x∨y Ë x∨yp− z, ÂÒÎË x, y p− z.pó‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÒÚ‚Ó ( L, − ) ̇Á˚‚‡ÂÚÒfl ¯ÂÚÍÓÈ, ÂÒÎË Í‡Ê‰˚‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ L ËÏÂ˛Ú Ó·˙‰ËÌÂÌË x ∨ y Ë ÔÂÂÒ˜ÂÌË x ∧ y. ó‡ÒÚÓÚÌÓÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p− ) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛ¯ÂÚÍÓÈ ÔÂÂÒ˜ÂÌËfl (ËÎËÌËÊÌÂÈ ÔÓÎÛ¯ÂÚÍÓÈ), ÂÒÎË Á‡‰‡Ì‡ ÚÓθÍÓ ÓÔ‡ˆËfl ÔÂÂÒ˜ÂÌËfl. ó‡ÒÚ˘ÌÓÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p− ) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛ¯ÂÚÍÓÈ Ó·˙‰ËÌÂÌËfl (ËÎË‚ÂıÌÂÈ ÔÓÎÛ¯ÂÚÍÓÈ), ÂÒÎË Á‡‰‡Ì‡ ÚÓθÍÓ ÓÔ‡ˆËfl Ó·˙‰ËÌÂÌËfl.ê¯ÂÚ͇ = ( L, p− , ∨, ∧) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÓ‰ÛÎflÌÓÈ Â¯ÂÚÍÓÈ (ËÎË ÔÓÎۉ‰ÂÍË̉ӂÓÈ Â¯ÂÚÍÓÈ), ÂÒÎË ÓÚÌÓ¯ÂÌË ÏÓ‰ÛÎflÌÓÒÚË ıåÛ ÒËÏÏÂÚ˘ÌÓ:ıåÛ ‚ΘÂÚ Ûåı ‰Îfl ‚ÒÂı x, y ∈ L.
éÚÌÓ¯ÂÌË ÏÓ‰ÛÎflÌÓÒÚË Á‰ÂÒ¸ ÓÔ‰ÂÎflÂÚÒflÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ‰‚‡ ˝ÎÂÏÂÌÚ‡ ı Ë Û Ò˜ËÚ‡˛ÚÒfl ÏÓ‰ÛÎflÌÓÈ Ô‡ÓÈ, ˜ÚÓÓ·ÓÁ̇˜‡ÂÚÒfl Í‡Í ıåÛ, ÂÒÎË x ∧ ( y ∨ z ) = ( x ∧ y) ∨ z ‰Îfl β·˚ı z p− x. ê¯ÂÚ͇ ,‚ ÍÓÚÓÓÈ Í‡Ê‰‡fl Ô‡‡ ˝ÎÂÏÂÌÚÓ‚ fl‚ÎflÂÚÒfl ÏÓ‰ÛÎflÌÓÈ, ̇Á˚‚‡ÂÚÒfl ÏÓ‰ÛÎflÌÓȯÂÚÍÓÈ (ËÎË ‰Â‰ÂÍË̉ӂÓÈ Â¯ÂÚÍÓÈ). ê¯ÂÚ͇ fl‚ÎflÂÚÒfl ÏÓ‰ÛÎflÌÓÈ ÚÓ„‰‡Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰ÂÈÒÚ‚ÛÂÚ Á‡ÍÓÌ ÏÓ‰ÛÎflÌÓÒÚË: ÂÒÎË z p− x, ÚÓx ∧ ( y ∨ z ) = ( x ∧ y) ∨ z ‰Îfl β·Ó„Ó y. ê¯ÂÚ͇ ̇Á˚‚‡ÂÚÒfl ‰ËÒÚË·ÛÚË‚ÌÓÈ, ÂÒÎËx ∧ ( y ∨ z ) = ( x ∧ y) ∨ ( x ∧ z ) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ L.177É·‚‡ 10.