Lektsii_zubova_2 (1181474), страница 7
Текст из файла (страница 7)
. . , an (x)} - ëèíåéíî íåçàâèñèìû{b1 (y), . . . , bn (y)} - ëèíåéíî íåçàâèñèìûaN (x) = α1 a1 (x) + . . . + αN−1 aN−1 (x) =K(x, y) =N−1∑N−1∑j=1αk ak (x)k=1N−1∑a j (x)· b j (y) + aN (x)· bN (y) =j=1=N−1∑N∑a j (x)· b j (y) +j=1N−1∑k=1N−1[] ∑a j (x) b j (y) + α j bN (y) =a j (x)b̂ j (y)j=134αk ak (x)bN (y) =a j (x)b j (y),ãäå:∫ [∑NÏîäñòàâèì: u(x) = λ]a j (x)b j (y) u(y)dy + f (x),Ââåä¼ì∫ îáîçíà÷åíèÿ:⟨G⟩bi (y)a j (y)dy = bi , a j ;à)µi j = NA = µij i,j=1G∫á)φi =⟨⟩bi (y) f (y)dy = bi , f ;Gñ)ci =∫x∈Gj=1⟨⟩bi (y)u(y)dy = bi , u ;G→−φ = φ1...→−c = c1...φNcN(∗∗)Óòâåðæäåíèå (îá ýêâèâàëåíòíîñòè):1)Ïóñòü u(x) ∈ C(G) - ðåøåíèå èíòåãðàëüíîãî óðàâíåíèÿ (∗) ñ âûðîæåäííûì ÿäðîì.
Òîãäà:N∑à) âûïîëíÿåòñÿ ðàâåíñòâî: u(x) = λ c j a j (x) + f (x),j=1−c îïðåäåë¼í îòíîøåíèåì (∗∗)á) ãäå âåêòîð →−c = →−â) è óäîâëåòâîðÿåò: (E − λA)→φ (∗ ∗ ∗)N∑−c - íåêîòîðîå ðåøåíèå ÑËÀÓ (∗ ∗ ∗). Òîãäà u (x) = λ2)Ïóñòü →c j a j (x) + f (x) - ðåøåíèå èíòåãðàëüíîãî∗j=1óðàâíåíèÿ.à)u(x) = λ∫ [∑Nj=1G∫b j (x)u(x)dx = λci = λN∑j=1u∗ (x) − λ=λ=λ∫j=1∫a j (x)bi (x)dx +cjGj=1Gf (x)bi (x)dx ⇒G−c = λA→−c + →−−c = →−c j µij + φi ⇒ →φ ⇒ (E − λA)→φ∫ [∑N[∫NN]∑∑a j (x)b j (y) u∗ (y)dy − f (x) = λc j a j (x) + f (x) − λa j (x) b j (y)u∗ (y)dy − f (x) =j=1G∫]a j (x) c j −j=1N∑N∑j=1GN∑∫N {N]}∑∑a j (x)b j (y) u(y)dy + f (x) = λa j (x) b j (y)u(y)dy + f (x) = λa j (x)c j + f (x)b j (y)u∗ (y)dy = λG[a j (x) c j − λN∑j=1i=1N∑j=1∫[G∫a j (x) c j −j=1]b j (y) f (y)dy = λi=1N∑j=1GÒî åñòü íåâÿçêà = 0, è ìû äîêàçàëè óòâåðæäåíèå.Òåïåðü ðàññìîòðèìñîþçíîå óðàâíåíèå:∫N[∑v(x) = λGv(x) = λ∫di =N∑]b j (x)a j (y) v(y)dy + g(x), x ∈ Gj=1b j (x)d j + g(x),ai (y)v(y)dyGãäå:∫j=1ψi =− →−Ïðè÷åì (E − λAT )→d =ψGN[ ∑] ]b j (y) λci ai (y) + f (y) dy =G∫b j (y)ai (y)dy −cij=1ai (y)g(y)dyGÏóñòü D(λ) = det(E − λA) = det(E − λA)T = det(E − λAT )1)D(λ) - ìíîãî÷ëåí îò λ ñòåïåíè 6 N2)D(λ) .
0, D(0) = 13)D(λ) = 0 èìååò êîíå÷íîå ÷èñëî êîðíåé λ1 , λ2 , . . . λp35N∑[]a j (x) c j − λµ ji · ci − φi = 0i=1(I) D(λ) , 0(II) λ = λk(λ , λ1 , λ2 , . . . λp )−c = →−òîãäà (E − λA)→φ èìååò åäèíñòâåííîå ðåøåíèå(1 6 k 6 p)D(λ) = 0 ⇒ Rg(E − λA) = Rg(E − λAT ) = r < NÏóñòü m = N − r−c = 0 èìååò ôóíäàìåíòàëüíóþ ìàòðèöó ðåøåíèé, ñîñòîÿùóþ èç →−c (1) , →−c (2) , .
. . , →−c (m)Ïóñòü (E − λA)→N∑(k)u1 (x), u2 (x), . . . , um (x) - ðåøåíèÿ, èì ñîîòâåòñòâóþùèå; uk (x) = λc j a j (x)Ïóñòü→−(E − λA ) d = 0Tj=1− (1) →−→−èìååò ôóíäàìåíòàëüíóþ ìàòðèöó ðåøåíèé, ñîñòîÿùóþ èç →d , d (2) , . . . , d (m)Ïîêàæåì, ÷òî u1 (x), u2 (x), . . . , um (x) - áàçèñ â ïðîñòðàíñòâå ðåøåíèé îäíîðîäíîãî óðàâíåíèÿ. Äëÿýòîãî ñíà÷àëà ïîêàæåì èõ ëèíåéíóþ íåçàâèñèìîñòü. Ïóñòüα1 u1 (x) + . . . + αm um (x) = 0NNN[ ∑][ ∑]∑[ (1)](1)(m)(m)0 = α1 λa j (x)x j + . . . + αm λa j (x)x j = λa j (x) α1 c1 + . . . + αm c j = 0j=1j=1j=1(èíà÷åìàòðèöàáóäåò åäèíè÷íîé){}N(m)+ . . .
+ αm c j = 0Ñèñòåìà a j (x) j=1 - ëèíåéíî íåçàâèñèìà ⇒ α1 c(1)1−c ( j) - ëèíåéíî íåçàâèñèìû, òî α = 0 ∀k = 1, mÀ òàê êàê →kÎïðåäåëåíèå:ôóíêöèÿu(x) ∈ C(G), u(x) . 0, óäîâëåòâîðÿþùàÿ îäíîðîäíîìó èíòåãðàëüíîìó óðàâíå∫íèþ u(x) = λ K(x, y)u(y)dy íàçûâàåòñÿ ñîáñòâåííîé ôóíêöèåé ÿäðà K(x, y) (èëè èíòåãðàëüíîãî îïåðàλ,0Gòîðà K). Ñîáñòâåííîå ÷èñëî λ íàçûâàåòñÿ õàðàêòåðèñòè÷åñêèì ÷èñëîì ÿäðà.1)õàðàêòåðèñòè÷åñêèå÷èñëà , 0 (λ , 0)∫12)µ = λ Ku = K(x, y)u(y)dy = λ1 u(x)G3)Õàðàêòåðèñòè÷åñêîå ÷èñëî - êîðåíü õàðàêòåðèñòè÷åñêîãî óðàâíåíèÿD(λ) = 04)Õàðàêòåðèñòè÷åñêèå ÷èñëà ÿäðà è òðàíñïîíèðîâàííîãî ÿäðà - ñîâïàäàþò è èõ êîíå÷íîå ÷èñëî(äëÿ íèõ îäèíàêîâîå õàðàêòåðèñòè÷åñêîå óðàâíåíèå)Óñëîâèå ðàçðåøèìîñòè èíòåãðàëüíîãî óðàâíåíèÿ∫u(x) = λK(x, y)u(y)dy + f (x)G−c = →−(E − λA)→φ ; D(λ) = 0→−→−→−−T(E − λA ) d = 0⇒ (→φ , d ) = 0 ∀ d ïî òåîðåìå Ôðåäãîëüìà∫NN ∫N[∑]∑∑0=φ jd j =b j (y) f (y)dy· d j =f (y)b j (y)d j dy = 0j=1v(x) = λ1λ∫j=1N∑GGb j (x)d j∫j=1f (y)v(y)dy = 0 ⇒Gj=1f (y)v(y)dy = 0 ∀v(y)- ðåøåíèå îäíîðîäíîãî ñîþçíîãî óðàâíåíèÿGÒåïåðü ïóñòü λ - ëþáîå, íî ÿäðî âûðîæäåíî.Èíòåãðàëüíîå óðàâíåíèå ñ ïîëÿðíûì ÿäðîì.∫u(x) = λK(x, y)u(y)dy + f (x),x∈GK(y, x)v(y)dy + g(x),y∈GG∫v(x) = λG36Òåîðåìà Âåéåðøòðàññà (àïïðîêñèìàöîèííàÿ)Ïóñòü Ω - îãðàíè÷åííàÿ îáëàñòü â Rn h(x) ∈ C(G).Òîãäà ∀ϵ ∃Pϵ (x) ïåðåìåííûõ x1 , x2 , .
. . , xn , ∥h(x) − Pϵ (x)∥C(G) = max |h(x) − Pϵ (x)| < ϵx∈GËåììà 9.8: Ïóñòü K - èíòåãðàëüíûé îïåðàòîð ñ íåïðåðûâíûì ÿäðîì K(x, y) ∈ C(G × G). Òîãäà ∀ϵ > 0Èíòåãðàëüíûé îïåðàòîð K ìîæíî ïðåäñòàâèòü â ñèäå K = Pϵ +K0,ϵ , ïðè÷åì ∥K0,ϵ ∥C(G) 6 ϵ;Ãäå Pϵ - èíòåãðàëüíûé îïåðàòîð ñ âûðîæäåííûì ÿäðîìK0,ϵ - èíòåãðàëüíûé îïåðàòîð ñ íåïðåðûâíûì ÿäðîì.Äîêàçàòåëüñòâî:1)K(x, y) ∈ C(G × G)⇒ ∃Pϵ (x, y)max K(x, y) − Pϵ (x, y) <x,y∈GÂâåä¼ìïåðåìåííûõ x1 , .
. . , xn , y1 , . . . , yn òàêîé, ÷òîϵmes GK0,ϵ (x, y) = K(x, y) − Pϵ (x, y)Ïîíÿòíî, òî Pϵ (x, y) áóäåò èíòåãðàëüíûì îïåðàòîðîì ñ âûðîæäåííûì ÿäðîì:Pϵ (x, y) =αx =xα1 1|α|+|β|6M∑Cαβ xα yβ , α = (α1 , . . . , αm ); β = (β1 , . . . , βn )α,β. . . xαnn ;ββyβ = y11 . .
. ynn∥K0,ϵ ∥C(G) = max K(x, y) − Pϵ (x, y)· mes G 6x,y∈Gϵ· mes G = ϵmes GËåììà 9.9: Ïóñòü K - èíòåãðàëüíûé îïåðàòîð ñ ïîëÿðíûì ÿäðîì K(x, y).Òîãäà ∀ϵ > 0 îí ïðåäñòàâëÿåòñÿ â âèäå: K = Pϵ + Qϵ , ïðè÷¼ì ∥Qϵ ∥C(G) < ϵ; ∥Q′ϵ ∥C(G) < ϵPϵ - èíòåãðàëüíûé îïåðàòîð ñ âûðîæäåííûì ÿäðîìQϵ - èíòåãðàëüíûé îïåðàòîð ñ ïîëÿðíûì ÿäðîìÄîêàçàòåëüñòâî: ∀ϵ > 0 K = K1,ϵ/2 + K2,ϵ/2 ïî òåîðåìå 9.2, ãäå:- èíòåãðàëüíûé îïåðàòîð ñ íåïðåðûâíûì ÿäðîì- èíòåãðàëüíûé îïåðàòîð ñ ïîëÿðíûì ÿäðîìK1,ϵ/2K2,ϵ/2ϵϵ′∥C(G) <∥K2,ϵ/222ϵ= Pϵ/2 + K0,ϵ/2 , ∥K0,ϵ/2 ∥C(G) <2∥K2,ϵ/2 ∥C(G) <K1,ϵ/2′∥C(G) <∥K0,ϵ/2ϵ2K = K1,ϵ/2 + K2,ϵ/2 = Pϵ + K0,ϵ/2 + K2,ϵ/2 = Pϵ + QϵQϵ- èíòåãðàëüíûé îïåðàòîð ñ ïîëÿðíûì ÿäðîì∥Qϵ ∥C(G) = ∥K0,ϵ/2 + K2,ϵ/2 ∥C(G) 6 ∥K0,ϵ/2 ∥C(G) + ∥K2,ϵ/2 ∥C(G) 6ϵ ϵ+ =ϵ2 2Ïóñòü{ K(x, y) - ïîëÿðíîå} ÿäðî èíòåãðàëüíîãî îïåðàòîðà;DR = λ : λ ∈ C; |λ| 6 R1Âûáåðåì ϵ > 0, ϵ = 2RN∑P(x, y) =a j (x)· b j (y)j=1∥Q∥C(G) <12R∥Q′ ∥C(G) <u = λKu + fu = λ(P + Q)u + f(I − λQ)u = λPu + f(I − λQ)u = λN∑∫N∑j=1(I + λQ′ )v = λP′ v + gb j (y)u(y)dy + f (x)a j (x)j=1(I − λQ′ )v = λ12RG∫a j (y)v(y)dy + g(x)b j (x)G37R>0- ëþáîå êîíå÷íîå′∥K0,ϵ∥C(G) 6 ϵ∥λQ∥C(G) = |λ|· ∥Q∥C(G) 6 λ∃(I − λQ)−1 ,u(x) = λN∑j=1u(x) = λN∑116 <12R 2îí îãðàíè÷åí è ïåðåâîäèò C(G) â C(G) äîìíîæèì íà íåãî:∫(I − λQ)−1 a j (x) b j (y)u(y)dy + (I − λQ)−1 f (x)|{z}|{z}G|{z}â j (x, λ)fˆ(x, λ)cjâ j (x, λ)c j + fˆ(x, λ)j=1v(x) = λN∑j=1∫′ −1(I − λQ ) b j (x)|{z}b̂ j (x, λ)v(x) = λN∑a j (y)v(y)dy + (I − λQ′ )−1 g(x)|{z}G|{z}ĝ(x, λ)djb̂ j (x, λ)d j + ĝ(x, λ)j=1(∗)(∗∗)−c = →−̂[E − λÂ(λ)]→φ→− →−̂[E − λÂ′ (λ)] d = ψ→−c = c1...→−d = d1...cNdN→−̂φ = φ̂1...φ̂N→−̂ψ = ⟨⟩Nµ̂ij (λ) = (bi , â j ) = bi , (I − λQ)−1 a jA(λ) = µ̂ij (λ)i, j=1⟨⟩Nµ̂′ij (λ) = (ai , b̂ j ) = ai , (I − λQ′ )−1 b jA′ (λ) = µ̂′i j (λ)i,j=1⟨⟩φ̂i = bi , (I − λQ)−1 f⟨⟩ψ̂i = ai , (I − λQ′ )−1 gψ̂1...ψ̂NËåììà 9.10:1°) Ìàòðèöà A′ (λ) - òðàíñïîíèðîâàííàÿ ê ìàòðèöå A(λ) ⇒ ñèñòåìû óðàâíåíèé (∗) è (∗∗) - ñèñòåìû ñòðàíñïîíèðîâàííûìè ìàòðèöàìè.2°) Ýëåìåíòû µ̂ij (λ) ìàòðèöû A(λ) - ðåãóëÿðíûå ôóíêöèè ïàðàìåòðà λ â êðóãå |λ| < 2RÄîêàçàòåëüñòâî:11)∥λQ∥C(G) 6 |λ|· ∥Q∥C(G) < 2R 2R<1Òî åñòü äàæå â îáëàñòè |λ| < 2R íàø îïåðàòîð ÿâëÿåòñÿ îïåðàòîðîì ñ ìàëîé íîðìîé.Òî æå ñàìîå ìîæíî ñêàçàòü è ïðî λQ′ : ∥λQ′ ∥C(G) < 1⟨⟩ ⟨⟩ ⟨⟩µ̂′i j (λ) = ai , (I − λQ′ )−1 b j = (I − λQ)−1 ai , b j = b j , (I − λQ)−1 ai = µ̂ij (λ)Òî åñòü ìàòðèöû ÿâëÿþòñÿ òðàíñïîíèðîâàííûìè äëÿ |λ| 6 R :D(λ) = det ∥E − λÂ(λ)∥ = det ∥E − λÂ′ (λ)∥1)D(λ) - íå åñòü ìíîãî÷ëåí îò λ, íî ÿâëÿåòñÿ ðåãóëÿðíîé ôóíêöèåé λ ïðè |λ| 6 R2)D(0) = 1 ⇒ D(λ) .
03) êðóãå |λ| 6 R D(λ) ìîæåò èìåòü ëèøü êîíå÷íîå ÷èñëî íóëåé. Ïðåäïîëîæèìïðîòèâíîå. Òîãäàìîæåì âûáðàòü ïîäïîñëåäîâàòåëüíîñòü, êîòîðàÿ ñõîäèòñÿ ê íåêîòîðîé òî÷êå. Òàêàÿ ôóíêöèÿ äîëæíàáûòü ≡ 0D(λ) → λ1 , λ2 , . . . , λp(R)(∗) áóäåò èìåòü íåâûðîæäåííóþ ìàòðèöó ⇒îñíîâíîãî óðàâíåíèÿ è äëÿ ñîþçíîãî ñîâïàäàþò.èìååò ðåøåíèå âñåãäà. Ðàçìåðíîñòè ïðîñòðàíñòâ äëÿÒåïåðü íàì áû õîòåëîñü íàéòè óñëîâèå ðàçðåøèìîñòè, êîãäà ìû ïîïàäàåì â λ38∫u(x) = λK(x, y)u(y)dy + f (x)G(I − λQ)u(x) = λN∑∫b j (y)u(y)dy + f (x)a j (x)j=1−c = →−̂(E − λÂ(λ))→φG→−(E − λÂ′ (λ)) d = 0T→−→−̂φ d =0=λN∑φ̂ j d j = λ⟨⟩f, v(x) = 0−1b j , (I−λQ)NN∑∑⟩ ⟨⟩⟨⟩⟨′ −1b̂ j (x, λ)d j = f, v(x)f dj =λ f, (I−λQ ) b j d j = f, λ⟩j=1j=1j=1Òàê êàê v(x) = λN ⟨∑N∑j=1b̂ j (x, λ)d jj=1- íåîáõîäèìîå óñëîâèå ðàçðåøèìîñòèÒåîðèÿ ïîòåíöèàëîâ.14π|x|∆K3 (x) = δ(x)K3 = −φ(x) ∈ C∞ (R3 ) φ(x) ≡ 0 ∀|x| > A)1∆ y φ(y)dy = φ(0)4π|y|R3∫Îïðåäåëåíèå: ôóíêöèÿ v(x) âèäà v(x) =∀φ(x)∫ (−ïîòåíöèàëîì ρ(x)∫v(x) =R3R3ρ(y)dy|x − y|íàçûâàåòñÿ îáú¼ìíûì Íüþòîíîâûì()−4πρ(y)1−dy14π|x − y|Òåîðåìà 10.1: Ïóñòü1)ρ(x) - êóñî÷íî-íåïðåðûâíàÿ îãðàíè÷åííàÿ ôóíêöèÿ â R32)ρ(x) ≡ 0 ∀x : |x| > A3∃Ω ⊂ R3 , òàêîå ÷òî ρ(x) ∈ C1 (Ω)Òîãäà:à)v(x) ∈ C1((R3))á)v(x) = O |x|1 ïðè |x| → ∞â)v(x) ∈ C2 (Ω)ã)∀x ∈ Ω ∆v(x) = −4πρ(x)Äîêàçûâàòü ýòó òåîðåìó ìû áóäåì â áîëåå ïðîñòîì ñëó÷àå, à èìåííî, êîãäàρ(x) ∈ C∞ (R3 ) & ρ(x) ≡ 0 ∀x : |x| > Ay − x =∫z :∫∫ρ(y)ρ(x + z)ρ(x + y)dy =dz =dy|x − y||z||y|R3 ∫R3R3αDρ(x+y)xDαx v(x) =dy ∀α & ∀x ∈ R3|y|v(x) =R3∂FËåììà 10.1: Ïóñòü F(x, y) è ∂x(x, y) ∈ C(Ω × G)jmΩ - îãðàíè÷åíàÿ îáëàñòü â RxG - îãðàíè÷åííàÿ îáëàñòü â Rn yg(y)- àáñîëþòíî èíòåãðèðóåìà, òî åñòüj = 1, m∫|g(y)|dy < +∞G39Òîãäà∫F(x, y)g(y)dy ∈ C (Ω)1èÄîêàçàòåëüñòâî:∂∂x j∫∫F(x, y)g(y)dy =GG∂F(x, y)g(y)dy∂x jG|F(x,∫ y)| 6 M ∀x ∈ Ω, ∫y ∈ G|F(x, y)g(y)|dy 6 M |g(y)|dy < +∞GÏóñòü Φ(x) =∫GF(x, y)g(y)dy, x ∈ Ω, x = (x1 , x2 , .
. . , xm ) ∆x = (0, 0, . . . , β, 0, . . . , 0)Gãäå β ñòîèò íà j ìåñòåÎöåíèì ñëåäóþùóþ âåëè÷èíó: ∫ [∫]F(x + ∆x, y) − F(x, y) ∂F Φ(x + ∆x) − Φ(x) ∂F−(x, y)g(y)dy = −(x, y) g(y)dy 6 β∂x jβ∂x jGG∫ ∂Fϵ ∂F6 ∂x j (x + θ· ∆x, y) − ∂x j (x, y)· |g(y)|· dy 6 K · K = ϵ |θ| 6 1G∫ ∂F ϵ∂F∀ϵ > 0 ∃δ(ϵ) > 0 ∀∆x : |∆x| < δ(ϵ) → (x + θ∆x, y) −(x, y) < ; K =|g(y)|dy ∂x j K∂x jGÏðîäîëæèì äîêàçàòåëüñòâî òåîðåìûΩ : |x| < R (RG : |y| < R + A- ïðîèçâîëüíîå)1|y|Ïóñòü |x| < R & |y| 6 R + A|x + y| 6 |y| − |x| 6 R + A − R = A ⇒ ρ(x + y) ≡ 0∫ρ(x + y)v(x) =dyρ - áåñêîíå÷íî äèôôåðåíöèðóåìà.|y||y|<R+A∫∫Dαy ρ(x + y)Dαx ρ(x + y)αDx v(x) =dy =dy|y||y||y|<R+A|y|<R+A∫∫−4π∆ y ρ(x + y)∆x ρ(x + y)∆x v(x) =dy =dy = −4πρ(x + 0) = −4πρ(x)|y|−4π|y|F(x, y) = ρ(x, y);g(y) =R3R3Òåïåðü äîêàæåì ïóíêò á) íàøåé òåîðåìû.|ρ(x)| 6 M ∀x : |x| 6 A∫∫|ρ(y)||v(x)| 6dy 6 M|x − y||y|<AR3dy|x − y||x| |x||y| 6 A |x| > 2A |x − y| > |x| − |y| > |x| −=22∫∫dy· 2 2M2M 4 3 M̃|v(x)| 6 M=dy =πA =|x||x||x| 3|x||y|<A⇒ v(x) = O|y|<A(1|x|)Ïîòåíöèàë ïðîñòîãî ñëîÿÎïðåäåëåíèå: îãðàíè÷åííîÿ îáëàñòü Ω ∈ R3 íàçûâàåòñÿ îáëàñòüþ ñ ãðàíèöåé Γ êëàññà C2 , åñëè îíàóäîâëåòâîðÿåò óñëîâèÿì:1)Äëÿ ëþáîé òî÷êè x0 = (x01 , x02 , x03 ) ∈ Γ ñóùåñòâóåò òàêàÿ äåêàðòîâà ñèñòåìà êîîðäèíàò ξ = (ξ1 , ξ2 , ξ3 ) ñíà÷àëîì â òî÷êå x0 (ñèñòåìà êîîðäèíàò çàâèñèò îò òî÷êè) è ôóíêöèÿ Fx (ξ′ ), ãäå ξ′ = (ξ1 , ξ2 ), |ξ′ | 6 r,òàêèå ÷òîà)Fx (ξ′ ) ∈ C2 (|ξ′ | 6 r), Fx (0, 0) = 0, ∂Fx∂ξ(0, 0) = 0 (i = 1, 2)0000i40á)Ìíîæåñòâî Σx0= {x : ξ3 = Fx0 (ξ′ ), |ξ′ | 6 r} ⊂ Γ- êóñîê ãðàíèöûâ)Ìíîæåñòâî Ux−= {x : Fx0 (ξ′ ) − h < ξ3 < Fx0 (ξ′ ), |ξ′ | < r} ⊂ Ωã)Ìíîæåñòâî Ux+= {x : Fx0 (ξ′ ) 6 ξ3 6 Fx0 (ξ′ ) + h, |ξ′ | < r}00íå ïåðåñåêàåòñÿ ñ Ω(çäåñü r > 0, h > 0 - íåêîòîðûå êîíñòàíòû)2)Òàê êàê Fx (ξ′ ) ∈ C2 (|ξ′ | 6 r), òî0 ∂Fx0 (ξ′ ) 6 M1∂ξi ∂2 Fx0 (ξ′ ) ′ 6 M2 (i, j = 1, 2; |ξ | 6 r)∂ξi ∂ξ j ïîñòîÿííûå r > 0, h > 0, M1 è M23)Òðåáóåòñÿ, ÷òîáûìîæíî áûëî âûáðàòü íå çàâèñÿùèìè îò òî÷êèè ñîîòâåòñâóþùåé ýòîé òî÷êå äåêàðòîâîé ñèñòåìû êîîðäèíàò.x0 ∈ ΓÄåêàðòîâó ñèñòåìó êîîðäèíàò ξ è îêðåñòîñòü Ux = Ux− ∪ Ux+ áóäåì íàçûâàòü ïîäõîäÿùèìè äëÿòî÷êè x0 , à ïåðåìåííûå ξ′ = (ξ1 , ξ2 ) - ëîêàëüíûìè êîîðäèíàòàìè íà êóñêå Σx ãðàíèöû Γ0000Íåîãðàíè÷åííàÿ îáëàñòü Ω ⊂ R3 íàçûâàåòñÿ âíåøíåé îáëàñòüþ ñ ãðàíèöåé êëàññà C2 , åñëè ìíîæåñòâî (R3 \Ω) ÿâëÿåòñÿ îãðàíè÷åííîé îáëàñòüþ ñ ãðàíèöåé Γ êëàññà C2Óòâåðæäåíèå:  ïîäõîäÿùåé ñèñòåìå ξ åäèíè÷íûé âåêòîð íîðìàëè ê Γ íà êóñêå Σxâ òî÷êå (ξ1 , ξ2 , Fx (ξ′ )), |ξ′ | 6 r, èìååò âèä00)∂Fx0 (ξ) ∂Fx0 (ξ)−,−,1∂ξ1∂ξ2→−n (ξ) =√()2 ()2∂Fx0 (ξ)∂Fx0 (ξ)1++∂ξ1∂ξ2(−n (0) = (0, 0, 1).
Òàêèì îáðàçîì, îñü Oξ ÷àñòíîñòè, â òî÷êå x0 , êîòîðàÿñîîòâåòñòâóåò òî÷êå ξ = 0, →3→−0íàïðàâëåíà ïî âíåøíåé íîðìàëè n ê ïîâåðõíîñòè Γ â òî÷êå x , à ïëîñêîñòü Oξ1 ξ2 ÿâëÿåòñÿ êàñàòåëüíîéê Γ â ýòîé òî÷êåÑâîéñòâà ãðàíèö êëàññà C2(1) Ôóíêöèÿ Fx (ξ′ ) óäîâëåòâîðÿåò îöåíêå0|Fx0 (ξ′ )| 6 M2 · |ξ′ |2ïðè |ξ′ | 6 rÄëÿ äîêàçàòåëüñòâî âîñïîëüçóåìñÿ ôîðìóëîé Òåéëîðà ñ îñòàòî÷íûì ÷ëåíîì â ôîðìå Ëàãðàíäæà: 222∑ ∑ ∂Fx0 ( )1 ∑ ∂2 Fx0 ( ′ )|Fx0 (ξ )| = |Fx0 (ξ ) − Fx0 (0)| = ∂ξ 0 · ξi + 2 ∂ξ ∂ξ η · ξi · ξ j 6 12 M2 |ξi |· |ξ j | =iiji,j=1i,j=1i=1()()212= M2 |ξ1 | + |ξ2 | 6 M2 |ξ1 |2 + |ξ2 |2 = M2 ξ′ 2() ()(2) Åñëè x ∈ Σx0 è y ∈ Σx0 , à ξ1 , ξ2 , Fx0 (ξ′ ) è η1 , η2 , Fx0 (η′ ) - êîîðäèíàòû ýòèõ òî÷åê′′â ïîäõîäÿùåéñèñòåìå êîîðäèíàò ξ, òî|ξ′ − η′ | 6 |x − y| 6 C· |ξ′ − η′ |,Äåéñòâèòåëüíî,Ñëåäîâàòåëüíî,ãäå C > 1 íå çàâèñèò (îò òî÷êè x0 è òî÷åêx ∈ Σx è y ∈ Σx)0′′|x − y| = (ξ1 − η1 ) + (ξ2 − η2 ) + Fx0 (ξ ) − Fx0 (η )2|x − y| > (ξ1 − η1 )2 + (ξ2 − η2 )2 = ξ′ − η′ 2222][) ∂Fx0 ( ) ()2()2∂Fx0 ( ′ ) (′′′Ñ äðóãîé ñòîðîíû, Fx0 (ξ ) − Fx0 (η ) = ∂ξ ξ̃ · ξ1 − η1 + ∂ξ ξ̃ · ξ2 − η2 61222)2)2(()2 ()2 ) ∂F 0 ( ) ( ∂F 0 ( ) (6 2· x ξ̃′ · ξ1 − η1 + 2· x ξ̃′ · ξ2 − η2 6 2· M21 ξ1 − η1 + ξ2 − η2 ∂ξ1 ∂ξ2()2Îòñþäà, |x − y|2 = (ξ1 − η1 )2 + (ξ2 − η2 )2 + Fx0 (ξ′ ) − Fx0 (η′ ) 6 (1 + 2M21 )· |ξ′ − η′ |2(3) Ñóùåñòâóåò ÷èñëî d > 0, íå çàâèñÿùåå îò òî÷êè x0 ∈ Γ è òàêîå, ÷òî øàðB(x0 , d) = {x : |x − x0 | < d} ⊂ Ux0410−n (x) − →−n (y)| 6 M · |x − y|, ãäå(4) Äëÿ ëþáûõ x ∈ Γ è y ∈ Γ èìååò ìåñòî îöåíêà: |→3âåêòîð íîðìàëè ê Γ â òî÷êå x (M3 - êîíñòàíòà, çàâèñÿùàÿ òîëüêî îò Γ).→−n (x)- åäèíè÷íûéÄëÿ áëèçêèõ x è y (à èìåííî |x − y| < d) èìååì:()()∂Fx0 (η′ ) ∂Fx0 (η′ )∂Fx0 (ξ′ ) ∂Fx0 (ξ′ )−,−,1−,−,1∂ξ1∂ξ2∂ξ1∂η2→−n (x) =→−n (y) =√√()2 ()2()2 ()2∂Fx0 (η′ )∂Fx0 (ξ′ )∂Fx0 (ξ′ )∂Fx0 (ξ′ )1++1++∂ξ1∂ξ2∂ξ1∂ξ2→−n (y) =−n (x) − →2 2′′′′Fξ1 (η )Fξ2 (η )Fξ2 (ξ )Fξ1 (ξ ) + √− √− √= √22222222′′′′′′′′1 + Fξ1 (ξ ) + Fξ2 (ξ )1 + Fξ1 (η ) + +Fξ2 (η )1 + Fξ1 (ξ ) + Fξ2 (ξ )1 + Fξ1 (η ) + +Fξ2 (η ) ∂= ∂ξ1 ∂ ∂ξ12)) ( ) ( ( ) ( √ Fξ1 ξ̃′ · ξ − η + ∂ √ Fξ1 ξ̃′ · ξ − η +1122 ∂ξ222 22 1+F +F 1 + Fξ1 + Fξ2 ξ1ξ22)) ( ) ( ( ) ( ξ̂′ · ξ − η + ∂ √ Fξ2 ξ̂′ · ξ − η √ Fξ261122 ∂ξ222 22 1+F +F 1 + Fξ1 + Fξ2 ξ2ξ16 2C· |ξ′ − η′ | 6 2C· |x − y|2 = M23 · |x − y|2Äëÿ òîãî, ÷òîáû ðàññìàòðèåâàåìîå íåðàâåíñòâî áûëî ñïðàâåäëèâî äëÿ äàë¼êèõ x è y (òî åñòü äëÿ(√2)|x − y| > d), äîñòàòî÷íî êîíñòàíòó M3 îïåðäåëèòü ðàâåíñòâîì M3 = max 2C,d(5) Åñëè x < Γ, òî íàéä¼òñÿ òàêàÿ òî÷êà x∗ ∈ Γ, ÷òî ∀y ∈ Γ |x − y| > |x − x∗ |Âåëè÷èíà |x − x∗ | íàçûâàåòñÿ ðàññòîÿíèåì îò òî÷êè x äî ãðàíèöû Γ.