Lektsii_zubova_2 (1181474), страница 3
Текст из файла (страница 3)
Âñïîìíèì ôîðìóëó Ãðèíà:" (ΩI)∂Q ∂Pdxdy =−Qdy + Pdx∂x∂y∂ΩÂîñïîëüçóåìñÿ ôîðìóëîé Ãðèíà â îáëàñòè Qϵτ = (x, t) ∈ (ϵ, l − ϵ) × (ϵ, τ) (Ìû íå ìîæåì áðàòü â êà÷åñòâå îáëàñòè QT , òàê êàê â ôîðìóëå Ãðèíà òðåáóåòñÿ íåïðåðûâíàÿ äèôôåðåíöèðóåìîñòü âïëîòü äîãðàíèöû.)Òîãäà:" ["I(t, x)dxdt = 0 =Qϵτ∫l−ϵ=ϵ1 2(vt + a2 v2x ) dx −t=τ2Qϵτ∫l−ϵϵ]" [[]]∂ 2∂ 212 2 1(vt + a vx )·− (a vt vx ) dxdt =− (v2t + a2 v2x )dx − a2 vt vx dt =22∂t∂x1 2(vt + a2 v2x ) dx −t=ϵ2Ïåðåéä¼ì ê ïðåäåëó ïðè ϵ → 0:∫l1 2(vt + a2 v2x ) dx − 0 − 0 + 0 = 0t=τ2⇒∫τa2 vt vx ϵ∂Qϵττ∫x=l−ϵa2 vt vx dt +ϵv2t + a2 v2x = 0 ∀x ∈ (0, l)x=ϵdt = 0èt=τ0Çíà÷èò ∇v(t, x) ≡ 0 ⇒ v(t, x) = const, ∀(t, x) ∈ QT , íî òàê êàê íà ãðàíèöå ðåøåíèå íóëåâîå, òî v(t, x) ≡ 0,çíà÷èò äâà ðåøåíèÿ ñîâïàäàþò. Ïðîòèâîðå÷èå. Èñïîëüçîâàííûé íàìè ìåòîä äîêàçàòåëüñòâà êàê óæåèçâåñòíî íàçûâàåòñÿ ìåòîäîì èíåãðàëà ýíåãðèè.Ðåøåíèå çàäà÷è ñ îäíîðîäíîé ïðàâîé ÷àñòüþ è îäíîðîäíûìè ãðàíè÷íûìè óñëîâèÿìè èùåì â âèäåðÿäà ïî ñîáñòâåííûì ôóíêöèÿì ñòàöèîíàðíîãî îïåðàòîðà "−∆" ñ îäíîðîäíûìè óñëîâèÿìè Äèðèõëå.11( πk )2πkx, k ∈ Nll∞∞∑∑πku(t, x) =θk (t)Xk (x) =θk (t) sinxlλk =; Xk (x) = sink=1k=1Ïîäñòàâèì è ôîðìàëüíî ïðîäèôôåðåíöèðóåì ðÿä.∞ [()]∑aπk 2πkθ′′(t)+θ(t)sinx=0kkllk=1∞∞∑∑πkπkθ′k (0) sin=θk (0) sinx;ut t=0 =xllutt − a2 uxx =ut=0k=1k=1à)Óñëîâèÿ ãëàäêîñòè:u0 (x) ∈ C3 ([0, l]); u1 (x) ∈ C2 ([0, l])á)Óñëîâèÿ ñîãëàñîâàíèÿ:(∗∗)(0) = 0u0 (0) = 0; u1 (0) = 0; u′′0(l)=0u0 (l) = 0; u1 (l) = 0; u′′0Óñëîâèå íà âòîðûå ïðîèçâîäíûå òàêæå ÿâëÿåòñÿ íåîáõîäèìûì, òàê êàê â óðàâíåíèÿõ ãèïåðáîëè÷åñêîãî òèïà, åñëè âîçíèêíåò ðàçðûâ íà ãðàíèöå, òî îí áóäåò ðàñïðîñòðàíÿòüñÿ ïî õàðàêòåðèñòèêå, òîåñòü ðåøåíèå áóäåò ðàçðûâíûì â QT , ÷òî íåïðèåìëèìî.u0 (x) =∞∑k=1u1 (x) =∞∑πkAk sinx;l2Ak =l∫lu0 (y) sinπky· dylu1 (y) sinπky· dyl0Bk sink=1πkx;lBk =2l∫l0Ñîñòàâëÿåì ðÿä çàäà÷ Êîøè äëÿ îáûêíîâåííîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ:)(aπk 2′′θk (t) = 0(t)+θ klθk (0) = Ak θ′ (0) = BkkÐåøåíèåì ýòîé çàäà÷è áóäåò:Òî åñòüaπklaπkt+Bk sintlaπkl∞ []∑aπklaπkπkAk cosu(t, x) =t+Bk sint sinx(∗ ∗ ∗)laπkllθk (t) = Ak cosk=1áóäåò õîðîøèì êàíäèäàòîì â ðåøåíèÿ.Òåîðåìà 5.5: Ïóñòü äàííûå ñìåøàííîé çàäà÷è (∗) ñ îäíîðîäíûìè ãðàíè÷íûìè óñëîâèÿìè è îäíîðîäíîé ïðàâîé ÷àñòüþ óäîâëåòâîðÿþò óñëîâèÿì (∗∗).
Òîãäà ðÿä (∗ ∗ ∗) :à)Ñõîäèòñÿ ðàâíîìåðíî è àáñîëþòíî â QTá)u(t, x) ∈ C2 (QT )â)u(t, x) - êëàññè÷åñêîå ðåøåíèå çàäà÷è (∗)ã)×àñòíûå ïðîèçâîäíûå äî 2 ïîðÿäêà ìîãóò áûòü íàéäåíû äèôôåðåíöèðîâàíèåì ðÿäà (∗ ∗ ∗) ïîä çíàêîìñóììû.2Ak =l∫l0=(lπk)2∫lπk2 lπk lπkl 2u0 (y) siny· dy = −u0 (y) cosy +u′0 (y) cosy· dy =0ll πklπk ll0( )3 ( )2 ∫ l ( )3 ∫ lπk ll 2πkl 2 ′′πk ll 2πk2 ′′′u (y) siny −u0 (y) siny· dy =u (y) cosy −u′′′y· dy ⇒0 (y) cosl 0l 0 πk llπk l 0l 0 πk ll( )3lAk = −αk ;πkÀíàëîãè÷íî:αk =2l∫l0u′′′0 (y) cos0πky· dyl- êîýôôèöèåíòû Ôóðüå u′′′0012()l 2Bk = −βk ;πk∞∑β2kk=126l2βk =l∫lu′′1 (y) sinπky· dyl- êîýôôèöèåíòû Ôóðüå u′′10∫l2[u′′1 (x)] dx=m21< ∞;∞∑k=1α2k26l∫l22[u′′′0 (x)] dx = m0 < ∞- Íåðàâåíñòâà Áåññåëÿ.0 0πk laπklaπk 6 |Ak | + |Bk ||uk (t, x)| = θk (t) sinx 6 |θk (t)| = Ak cost+Bk sin6llaπkl aπk( )3( )3 |β | ( )3 []l |αk |ll111k6+=|α|+|β|6 const· 3 ⇒kkπ k3π ak3πak3kÐÿä ñõîäèòñÿ àáñîëþòíî è ðàâíîìåðíî â QT , ïîðîæäàåò íåïðåðûâíóþ ôóíêöèþ, èíîðîäíûì ãðàíè÷íûì óñëîâèÿì.]aπkaπkπkt + Bk cost sinxllllk=1()( )2( )2( )2 []1 −aπkaπkaπkπk aπklllAk sint + Bk cost sinx 6|Ak | + |Bk | 6 a|αk | +|βk | =a|αk | + |βk | 2 6llll lπkπkπk16 const1 · 2k∞ [∞∞ (()])∑∑∑aπk 2aπkaπkaπkπkaπk 2πkutt v−Ak cost−Bk sint sinx=dk (t, x) = −θk (t) sinxlllllllk=1k=1k=1 ()))[() ](aπk 2 aπkBk laπk aπk 2laπk 2Ak cos|θk (t)| = (t+sint 6|Ak | +|Bk | 6|dk (t, x)| 6lllaπkllaπk( )[() [( )( )( )2 ]]l |αk | 1 |βk |1aπk 2 l 3ll6|αk | +|βk | = a36 const2 ·+lπkπk πkπ ka kkut v∞ [∑−aπkóäîâëåòâîðÿåò îä-Ak sin ñèëó ëåììû 5.3 èñõîäíûé ðÿä ñõîäèòñÿ ðàâíîìåðíî è àáñîëþòíî, çíà÷èò ìû äîêàçàëè, ÷òî uttíåïðåðûâàíà â QT .
Àáîñîëþòíî àíàëîãè÷íî äîêàçûâàåòñÿ, ÷òîuxx =∞ ()∑πk 2k=1lθk (t) sinπkxlÁîëåå òîãî îòñþäà î÷åâèäíî ñëåäóåò, ÷òî utt − a2 uxx = 0Òî åñòü u(t, x) ∈ C(QT ). Òî åñòü ìû ïîêàçàëè, ÷òî ýòî äåéñòâèòåëüíî êëàññè÷åñêîå ðåøåíèå. Ïîñëåäíèé ïóíêò òåîðåìû ìû ïîëó÷èëè â ïðîöåññå ðåøåíèÿ.Ìåòîä Ôóðüå äèêòóåò íàì îãðàíè÷åíèÿ. Íî ðåøåíèå ñóùåñòâóåò è ïðè áîëåå ñëàáûõ óñëîâèÿõ, íîâ ýòîì ñëó÷àå ðåøåíèå íå áóäåò ïðåäñòàâëÿòüñÿ ðÿäîì Ôóðüå.à) f (t, x), fx (t, x) ∈ C(QT )f (t, 0) = 0; f (t, l) = 0;á)u0 (x) ∈ C2 ([0, l]);u1 (x) ∈ C1 ([0, l])u0 (0) = 0; u1 (0) = 0; u′′(0) = 00u0 (l) = 0; u1 (l) = 0; u′′(l)=00Èñïîëüçóåì ìåòîä ïðîäîëæåíèé. Ñäåëàåì u0 , u1 , f2πïåðèîäè÷åñêèìè è íå÷¼òíûìè. Òîãäà:û0 (x) ∈ C2 (R1 )û1 (x) ∈ C1 (R1 )1fˆ(t, x) ∈ C0,1t,x ([0, T] × R )Òåïåðü ìîæíî ñôîðìóëèðîâàòü çàäà÷ó Êîøè:{ûtt − a2 ûxx = fˆ(t, x), t ∈ (0, T); x ∈ R1ût=0 = û0 (x); ût t=0 = û1 (x),x ∈ R1Êàê ìû çíàåì, ðåøåíèå å¼ ïðåäñòàâëÿåòñÿ ôîðìóëîé Äàëàìáåðà:û0 (x + at) − û0 (x − at)1+û(t, x) =22ax+at∫∫t1û1 (ξ)dξ +2ax−atx+a(t−τ)∫0 x−a(t−τ)13f (ξ, τ)· dξ· dτÏîëó÷èâøàÿñÿ ôóíêöèÿ òîæå áóäåò íå÷¼òíîé è 2l ïåðåîäè÷åñêîé è u(t, 0) = u(t, l) = 0.
Äàëüøå âûðåçàåì êóñîê ôóíêöèè, â íóæíîì ïðÿìîóãîëüíèêå.Äàëåå ìû çíàåì, ÷òî äåëàòü, åñëè u(t, 0) = ψ0 (t);u(t, l) = ψ1 (t)Ñðàâíèì ðåøåíèÿ â ñëó÷àå êîëåáàíèÿ è òåïëîïðîâîäíîñòè:ut − a2 uxx = 0; t > 0, x ∈ (0, l) u = u (x), x ∈ (0, l)0t=0 u = 0; u = 0, t > 0x=0x=lu0 (x) ∈ C ([0, l])u0 (0) = u0 (l) = 0∞∑aπk 2πkAk e−( l ) t sinu(t, x) =xl1k=1u(t, x) ∈ C(QT ) ∩ C∞ (QT )utt − a2 uxx = 0; t > 0, x ∈ (0, l) u = u (x); u = u (x), x ∈ (0, l)01t=0 t t=0 u = 0; u = 0, t > 0x=0x=lu0 (x) ∈ C ([0, l]); u1 (x) ∈ C ([0, l])(0) = 0u0 (0) = u1 (0) = u′′0u0 (l) = u1 (l) = u′′(l)=00∞ []∑aπkaπkπklAk cosu(t, x) =t + Bksint sinxlaπkll32k=1u(t, x) ∈ C2 (QT )Ìåòîä Ôóðüå ìîæíî èñïîëüçîâàòü â îáëàñòÿõ ïðÿìîóãîëüíîãî âèäà è äëÿ óðàâíåíèÿ â ÷àñòíûõïðîèçâîäíûõ ñïåöèàëüíîãî âèäà:A(t)u tt + B(t)Ut + C(x)uxx + D(x)ux + E(x)u + G(t)u = 0 t > 0; a < x < but=0 = u0 (x) ut t=0 = u1 (x)α0 u(t, a) − β0 ux (t, a) = 0, t > 0α1 u(t, b) + β1 ux (t, b) = 0, t > 0Èäåÿ: èùåì ÷àñòíûå ðåøåíèÿ êàêèå-ëèáî, èç íèõ âûäåëèòü òå, êîòîðûå óäîâëåòâîðÿþò óñëîâèÿì,è ðåøåíèå ïðåäñòàâèòü â âèäå ðÿäà ïî ýòèì ðåøåíèÿì ñïåöèàëüíîãî âèäà.u(t, x) = θ(t)· X(x)A(t)θ′′ (t)X(x) + B(t)θ′ (t)X(x) + C(x)θ(t)X′′ (x) + D(x)θ(t)X′ (x) + E(x)θ(t)X(x) + G(t)θ(t)X(x) = 0A(t)θ′′ (t)θ′ (t)X′′ (x)X′ (x)+ B(t)+ G(t) = −C(x)− D(x)− E(t) = const = λθ(t)θ(t)X(x)X(x)A(t)θ′′ (t) + B(t)θ′ (t) + G(t)θ(t) = λθ(t), t > 0−C(x)X′′ (x) − D(x)X′ (x) − E(x)X(x) = λX(x), a < x < b{α0 X(a) − β0 X′ (a) = 0α1 X(b) + β1 X′ (b) = 0Ñóçèì ìíîæåñòâî ðàññìàòðèâàåìûõ ôóíêöèé: C(x) ∈ C1 ([a, b]);Ðàññìîòðèì ñëåäóþùèé èíòåãðèðóþùèé ìíîæèòåëü:µ = exp{ ∫x}D(ξ) − C′ (ξ)dξ > 0C(ξ)aââåä¼ì îáîçíà÷åíèÿ:14C(x) > 0 ∀x ∈ [a, b]p(x) = µ(x)C(x)q(x) = −µ(x)E(x)Òîãäà íàøó çàäà÷ó ìîæíî çàïèñàòü ñëåäóþùèì îáðàçîì:[]dX(x)d−p(x)+ q(x)X(x) = λ· µ(x)X(x) dxdx′α0 X(a) − β0 X (a) = 0α1 X(b) + β1 X′ (b) = 0Ïîñëå çàìåí:√Y(x) =µ(x)X(x); p̃(x) =ýòî ïðèâåä¼òñÿ ê âèäó:)][(p(x)q(x)1dd1; q̃(x) =− √p(x)√µ(x)µ(x)dxµ(x) dxµ(x)[]dY(x)d−p̃(x)+ q̃(x)Y(x) = λY(x) dxdx′α0 Y(a) − β0 Y (a) = 0α1 Y(b) + β1 Y′ (b) = 0Äàëåå áóäåì ðàáîòàòü ñ çàäà÷åé:[]dX(x)d−p(x)+ q(x)X(x) = λX(x) dxdxα0 X(a) − β0 X′ (a) = 0α1 X(b) + β1 X′ (b) = 0ñî ñëåäóþùèìè ïðåäïîëîæåíèÿìè:p(x) ∈ C1 ([a, b]) = C1 ([0, l]); p(x) > 0, ∀x ∈ [0, l]p(x) ∈ C1 ([0, l]); q(x) > 0, ∀x ∈ [0, l]α0 > 0; β0 > 0; |α0 | + |β0 | > 0α1 > 0; β1 > 0; |α1 | + |β1 | > 0Ââåä¼ì îïåðàòîð A:à)D(A) = {X(x): X(x) ∈ C2 ([0, l]);[]′á) X(x) → − p(x)X′ (x) + q(x)X(x)â) ImA = C([0, l])α0 X(0) − β0 X′ (0) = 0;α1 X(l) + β1 X′ (l) = 0}Ëåììà 5.5 Îïåðàòîð A ÿâëÿåòñÿ ñèììåòðè÷íûì è íåîòðèöàòåëüíûì íà D(A) îòíîñèòåëüíî ñêàëÿðíîãî ïðîèçâåäåíèÿ ïðîñòðàíñòâà L2 (0, l): (u, v) =∫l(Au, v) =Au(x)v(x)dx =0∫l (∫lu(x)v(x)dx0∫l [∫l)]′′− p(x)u (x) + q(x)u(x) v(x)dx = −p(x)u (x) v(x)dx + q(x)u(x)v(x)dx =[′]′0∫[]l ∫′′′= − p(x)u (x)v(x) +p(x)u (x)v (x)dx +q(x)u(x)v(x)dx =l00l00= −p(l)u′ (l)v(l) + p(0)u′ (0)v(0) +[]− p(l)u′ (l)v(l) =α1 u(l) + β1 u′ (l) = 0α1 v(l) + β1 v′ (l) = 0∫l [0]p(x)u′ (x)v′ (x) + q(x)u(x)v(x) dx0]−p(l) [α1 u′ (l)v(l) + β1 u′ (l)v(l)(α1 + β1 )[]⇒ − p(l)u′ (l)v(l) =Àíàëîãè÷íî:Òîãäà:]p(l) [ ′ ′β1 u (l)v (l) + α1 u(l)v(l)(α1 + β1 )[]]p(0) [ ′p(0)u′ (0)v(0) =β0 u (0)v′ (0) + α0 u(0)v(0)(α0 + β0 )]] ∫ []p(l) [ ′ ′p(0) [ ′′β1 u (l)v (l)+α1 u(l)v(l) +β0 u (0)v (0)+α0 u(0)v(0) +(Au, v) =p(x)u′ (x)v′ (x)+q(x)u(x)v(x) dx(α1 + β1 )(α0 + β0 )l015Ñðàçó çàìåòèì, ÷òî òîãäà, ÷òî:]]p(l) [p(0) [(Au, u) =β1 |u′ (l)|2 + α1 |u(l)|2 +β0 |u′ (0)|2 + α0 |u(0)|2 +(α1 + β1 )(α0 + β0 )Ïðîäîëæàåì äîêàçàòåëüñòâî ñèììåòðè÷íîñòè:(u, Av) = (Av, u) = (Av, u) =]]p(l) [ ′p(0) [ ′=β1 v (l)u′ (l) + α1 v(l)u(l) +β0 v (0)u′ (0) + α0 v(0)u(0) +(α1 + β1 )(α0 + β0 )Òî åñòü ìû òîëüêî ÷òî äîêàçàëè, ÷òî (u, Av) = (Au, v)Äîêàçàòåëüñòâî çàâåðøåíî.∫l []p(x)|u′ (x)|2 + q(x)|u(x)|2 dx > 00∫l []p(x)v′ (x)u′ (x) + q(x)v(x)u(x) dx0∀u, v ∈ D(A)Ëåììà 5.6: Ñîáñòâåííûå çíà÷åíèÿ çàäà÷è Øòóðìà-Ëèóâèëëÿ íåîòðèöàòåëüíû è ïðîñòû.
Áîëåå òîãî, ñîáñòâåííûå ôóíêöèè, ñîîòâåòñòâóþùèå ðàçëè÷íûì ñîáñòâåííûì çíà÷åíèÿì îðòàãîíàëüíû îòíîñèòåëüíî ñêàëÿðíîãî ïðîèçâåäåíèÿ ïðîñòðàíñòâà L2 ([0, l])Ïóñòü λ - ñîáñòâåííîå çíà÷åíèå, X∗ - ñîáñòâåííàÿ ôóíêöèÿ, ñîîáòâåòñòâóþùàÿ åìó.AX∗ = λX∗(AX∗ , X∗ ) = (λX∗ , X∗ ) = λ(X∗ , X∗ ) > 0 ⇒ λ > 0Îðòàãîíàëüíîñòü ñëåäóåò èç ñèììåòðè÷íîñòè îïåðàòîðà. Ñîáñòâåííîå çíà÷åíèå íàçûâàåòñÿ ïðîñòûì, åñëè åìó ñîîáòâåòñòâóåò ðîâíî îäíà ñîáñòâåííàÿ ôóíêöèÿ.Ïðåäïîëîæèì ïðîòèâíîå, ïóñòü XI ∈ D(A); XII ∈ D(A); - ñîáñòâåííûå ôóíêöèè äëÿ îäíîãî λ.]′ [′−p(x)X(x)+ q(x)X(x) = λX(x)′αX(0)−βX(0) = 000 α X(l) + β X′ (l) = 011{α0 XI (0) − β0 XI′ (0) = 0α0 XII (0) − β0 XII′ (0) = 0-îäíîðîäíàÿ ëèíåéíàÿ ñèñòåìà îòíîñèòåëüíî α0 , β0Ó ýòîé ñèñòåìó ñóùåñòâóåò íåòðèâèàëüíîå ðåøåíèå, çíà÷èò: XI (0) −XI′ (0) XII (0) −X′ (0)II = 0 = −W(0)Òî åñòü îïðåäåëèòåëü Âðîíñêîãî â íåêîòîðîé òî÷êå ðàâåí 0.