Lektsii_zubova_2 (1181474), страница 6
Текст из файла (страница 6)
Çíà÷èò u∗ (r, θ, φ) - ãàðìîíè÷åñêàÿ â ïðîêîëîòîé îêðåñòíîñòè 0û∗ (r, θ, φ) =Òåîðåìà 8.9: Ïóñòü u(x) - ãàðìîíè÷åñêàÿ ôóíêöèÿ â îêðåñòíîñòè ∞{x : x ∈ R3 , |x| >(R} )è u(x) → 0 ïðè( |x| →)∞11αÒîãäà u(x) = O |x| è D u(x) = O |x|1+|α|Ïîñòîðèì u∗ (x∗ ) = |xR∗ | u(R2 ∗x|x∗ |2)(ïðèìåíèì ê íàøåé ôóíêöèè ïðåîáðàçîâàíèå Êåëüâèíà)1)u∗ (x∗ ) - ãàðìîíè÷åñêàÿâ ïðîêîëîòîé îêðåñòíîñòè 0( 2 )R2)|x∗ |· u∗ (x∗ ) = R· u |x∗ |2 x∗ → 0 ïðè |x∗ | → 0(3)u∗ (x∗ ) ∈ C∞ x∗ : 0 < |x∗ | 6 R2)⇒ ∃0 < Mα < ∞ : |Dα u∗ (x∗ )| 6 Mα2R R4) |x|·R|x∗ | = 1 = |x|· ∗|x |Åñëè x∗ îïðåäåëåíà â îêðåñòíîñòè 0, òî x â îêðåñòíîñòè ∞u(x) = u()( 2 )R2 ∗R RR ∗RRx=·ux = u∗ (x∗ ) 6 M0∗∗2∗2|x| |x | |x ||x||x||x |Äîêàæåì àíàëîãè÷íîå ñâîèéñòâî äëÿ ïðîèçâîäíûõ.α = (1, 0, 0)28( 2 )R· u ∗ 2 x∗|x |33[]()∗∂u(x)∂ R ∗ ∗x1R ∑ ∂u∗ (x∗ ) ∂xkx1 ∗ ∗R3 ∑ ∂u∗ (x∗ ) 1x1 xk=u (x ) = −R 3 u∗ (x∗ ) +=−Ru(x)+δ−2k∂x1∂x1 |x||x||x||x|3|x|3|x|2∂x∗k ∂x1∂x∗kk=1k=1Òåïåðü ïðîâåä¼ì îöåíêè: []3 ∂u(x) |x1 | 1 ∗ ∗R3 ∑ ∂u∗ (x∗ ) |x1 ||xk |M0R31·δ6R·|u(x)|++2·6R+· M100 · 7k∗ ∂x |{z}|x| |x|2 | {z } |x|3|x||x|∂x1|x|2 |x|3kk=1|{z}|{z} |{z}| {z }616M06161 616 M100 ∂u(x) M̃6∂x1 |x|2Ïîñòàíîâêà âíåøíèõ çàäà÷Îïðåäåëåíèå: Îáëàñòü Ω ⊂ R3 íàçûâàåòñÿ âíåøíåé, åñëè ìíîæåñòâî (R3 \Ω) - îãðàíè÷åííàÿ îáëàñòüâ R3 ; ∂Ω = ∂(R3 \Ω)Îïðåäåëåíèå: Ïóñòü Ω - âíåøíÿÿ îáëàñòü â R3 ñ ãëàäêîé (êóñî÷íî-ãëàäêîé) ãðàíèöåé Γ.Âíåøíÿÿ çàäà÷à Äèðèõëå:íàéòè ôóíêöèþ u(x) ∈ C2 (Ω) ∩ C(Ω ∪ Γ) òàêóþ, êîòîðàÿ óäîâëåòâîðÿåò óñëîâèÿì:1)∆u(x)= 0 ∀x ∈ Ω2)uΓ = u0 (x), u0 (x) ∈ C(Γ)3)u(x) → 0, ïðè |x| → ∞Âíåøíÿÿ çàäà÷à Íåéìàíà:íàéòè ôóíêöèþ u(x) ∈ C2 (Ω) ∩ C1 (Ω ∪ Γ) òàêóþ, êîòîðàÿ óäîâëåòâîðÿåò óñëîâèÿì:1)∆u(x) = 0 ∀x ∈ Ω = u1 (x), u1 (x) ∈ C(Γ)2) ∂u→−∂ n Γ3)u(x) → 0, ïðè |x| → ∞Ðåøåíèÿ, óäîâëåòâîðÿþùèå ýòèì óñëîâèÿ íàçûâàþòñÿ êëàññè÷åñêèìè.Òåîðåìà 8.10: íå ìîæåò ñóùåñòâîâàòü áîëåå îäíîãî êëàññè÷åñêîãî ðåøåíèÿ âíåøíåé çàäà÷è Äèðèõëå äëÿ óðàâíåíèÿ Ëàïëàñà.Ïðåäïîëîæèì ïðîòèâíîå: v(x) = uI (x) − uII (x);Ω1 = (R3 \Ω)1)v(x) - ãàðìîíè÷åñêàÿ ôóíêöèÿ â Ω2)v(x)∈ C(Ω ∪ Γ)3)v(x)Γ ≡ 04)v(x) → 0 ïðè |x| → ∞∀ϵ > 0 ∃R(ϵ) > 0,òàêîé ÷òî ∀x : |x| > E(ϵ)→ |v(x)| 6 ϵΩR(ϵ) = Ω ∩ {x : |x| < R(ϵ)}Òîãäà |v(x)| 6max |v(y)| 6 ϵy ∈ ∂ΩR(ϵ)- ïî ñëåäñòâèþ èç ïðèíöèïà ìàêñèìóìà|v(x)| 6 ϵ ∀x ∈ (Ω ∪ Γ)Òåîðåìà 8.11: íå ìîæåò ñóùåñòâîâàòü áîëåå îäíîãî êëàññè÷åñêîãî ðåøåíèÿ âíåøíåé çàäà÷è Íåéìàíà äëÿ óðàâíåíèÿ Ëàïëàñà.Ïðåäïîëîæèì ïðîòèâíîå: v(x) = uI (x) − uII (x);Ω1 = (R3 \Ω)1)v(x) - ãàðìîíè÷åñêàÿ ôóíêöèÿ â Ω2)v(x)∈ C2 (Ω) ∩ C1 (Ω ∪ Γ) ≡03) ∂v→−∂ n Γ4)v(x) → 0 ïðè |x| → ∞29ΩR(ϵ) = Ω ∩ {x : |x| < R(ϵ)}v(x) ∈ C∞ (ΩR(ϵ) ) ∩ C1 (ΩR(ϵ) )∆v(x) ≡ 0 ∀x ∈ ΩR(ϵ) ⇒ ∆v(x) ∈ C(ΩR(ϵ) )Ìîæåì ïðèìåíèòü ïåðâóþ ôîðìóëó Ãðèíà:∫I∂v(x)−n v(x)dSx +∂→[∆v(x)]v(x)dx = 0 =ΩR(ϵ)I|x|=R(ϵ)∂v(x)−n v(x)dSx =∂→∫ΓI|x|=R(ϵ)2∇v(x) dx∫∂v(x)−n v(x)dSx −∂→ΩR(ϵ)ΩR(ϵ)Âîçüì¼ì ïðîèçâîëüíîå R1 > R(ϵ)∫∫ I22∇v(x) dx 6∇v(x) dx =ΩR(ϵ)4πC1 C2→0=R12∇v(x) dx ⇒ΩR1|x|=R1∂v(x)−n v(x)dSx 6∂→I|x|=R1IC1 C2 ∂v(x) −n · v(x) dSx 6 R2 R1 ∂→1dS =|x|=R1ïðè R1 → ∞Òàê êàê( )âûïîëíåíû ñëåäóþùèå() îöåíêè:v(x) = O1;|x||∇v(x)| = OÎòñþäà ∇v(x) ≡ 0 − ∂v →1 = (−n , ∇v) 6 |→; →n |· |∇v|−2|x|∂n⇒ v(x) ≡ const ≡ 0(òàê êàê íà ãðàíèöå 0)Èíòåãðàëüíûå óðàâíåèÿ Ôðåäãîëüìà 2 ðîäà.∫u(x) = λK(x, y)u(y)dy + f (x), x ∈ GGG - îãðàíè÷åííàÿ îáëàñòüu(x) ∈ C(G), x ∈ Gf (x) ∈ C(G)K(x, y) → (x, y) ∈ (G × G)â Rn∫ßäðî èíòåãðàëüíîãî îïåðàòîðà.Óðàâíåíèå Ôðåäãîëüìà 1 ðîäà:Ku =K(x, y)u(y)dyG∫b1· u(y)dy + f (y) = 0 ⇒f (x) = constaÈíòåãðàëüíûå îïåðàòîðû ñ íåïðåðûâíûìè è ïîëÿðíûìè ÿäðàìè.Ëåììà 9.1: ïðîñòðàíñòâî C(G), ñíàáæåííîå íîðìîé C (∥u∥C(G) = max |u(x)|) ÿâëÿåòñÿ Áàíàõîâûì ïðîx∈Gñòðàíñòâîì.Äîêàçàòåëüñòâî: Ïóñòü uk (x) - ôóíäàìåíòàëüíàÿ ïîñëåäîâàòåëüíîñòü∀ϵ > 0 ∃N(ϵ) > 0 : ∀k, m > N(ϵ) ∥uk (x) − um (x)∥C(G) = max |uk (x) − u(x)| < ϵ1)x0 ∈ G{uk (x0 )} → u(x0 ) â ñèëó ïîëíîòû R|uk (x0 ) − um (x0 )| 6 max |uk (x) − um (x)| < ϵx∈Gu(x), x ∈ G∀ϵ > 0 ∃N(ϵ) > 0,òàêîå ÷òî ∀k, m > N(ϵ)|uk (x) − um (x)| < ϵ (∀x ∈ G)Óñòåìèì m ê áåñêîíå÷íîñòè:|uk (x) − u(x)| 6 ϵ (∀x ∈ G)max |uk (x) − u(x)| 6 ϵ ⇒ ∥uk (x) − u(x)∥C(G) 6 ϵx∈G30(!ÍÅÏÎÍßÒÍÎ ïî÷åìó ôóíêèÿ u áóäåò íåïðåðûâíîé)Îïðåäåëåíèå: åñëè K(x, y) ∈ C(G × G) - òî ýòî ÿäðî íàçûâàåòñÿ íåïðåðûâíûì.Òåîðåìà 9.1: Åñëè K(x, y) ∈ C(G × G), òî èíòåãðàëüíûé îïåðàòîð K:1)D(K) = {u(x) : u(x) ∈∫C(G)}2)K : u(x) → Ku(x) = K(x, y)u(y)dyGà)ßâëÿåòñÿ îãðàíè÷åííûì.∫á)∥K∥C(G) 6 max |K(x, y)|dy 6x∈G1)u(x) ∈ C(G);G|K(x, y)|· |G|max(x,y)∈(G×G)|G| = mes G∫K(x, y) ∈ C(G × G); Ku(x) =K(x, y)u(y)dy⇒Ku(x) ∈ C(G)max|K(x, y)|· |G|∫G ∫2)|Ku(x)| = K(x, y)u(y)dy 6 max |u(y)|· |K(x, y)|dy∫G∥Ku∥C(G) = max |Ku(x)| 6 maxx∈G∫∥Ku∥C(G) 6 maxx∈Gx∈Gy∈GG|K(x, y)|dy· ∥u(x)∥C(G) ⇒G[]|K(x, y)|dy = max max |K(x, y)| · mes G 6x∈GGy∈G(x,y)∈(G×G)Îïðåäåëåíèå: ßäðî K(x, y) íàçûâàåòñÿ ïîëÿðíûì, åñëè åãî ìîæíî ïðåäñòàâèòü â âèäåæ(x, y)K(x, y) =( ∀(x, y) ∈ (G×G), x , y) ãäå æ(x, y) ∈ C((G×G)) è α < n (ðàçìåðíîñòü ïðîñòðàíñòâà)|x − y|αËåììà 9.4:( ßäðî K(x, y) )ÿâëÿåòñÿ ïîëÿðíûì òîãäà è òîëüêî òîãäà, êîãäà:à)K(x, y) ∈ C (G × G)\{x = y}á)|K(x, y)| 6 |x −B y|β ∀x ∈ G; y ∈ G; x , yB > 0; β < nÄîêàçàòåëüñòâî â (⇒)K(x,y) - ïîëÿðíîå ⇒ K(x, y) - íåïðåðûâíîå⇒ïî òåîðåìå Âåéåðøòðàññà äëÿ æ∃B : |æ| 6 BÄîêàçàòåëüñòâî â (⇐)Ïîêàæåì, ÷òî ìîæíî ïîñòðîèòü íóæíóþ æa)β < n ⇒ ∃ϵ > 0 : β + ϵ < n{æ(x, y) =æK(x, y)· (x − y)β+ϵ , x ∈ G; y ∈ G; x , y0,x=y∈G- íåïðåðûâíàÿ â G × G\{x = y}Ðàññìîòðèì ïðîèçâîëüíóþ òî÷êó (x0 , y0 ) ∈ G;x0 = y0B|æ(x, y) − æ(x0 , y0 )| = |æ(x, y)| = |K(x, y)|· |x − y|β+ϵ 6|x − y|β+ϵ = B|x − y|ϵ =|x − y|β()ϵϵ= Bx − x0 + x0 − y 6 B |x − x0 | + |y − y0 |ïðè (x, y) → (x0 , y0 ) :|x − x0 | → 0; |y − y0 | → 0, çíà÷èò B(|x − x0 | + |Y − y0 |)ϵ → 0, çíà÷èò æ - íåïðåðûâíàÎïðåäåëåíèå: ÿäðîì, òðàíñïîíèðîâàííûì ê ÿäðó K(x, y) íàçûâàåòñÿ ÿäðî K′ (x, y) = K(y, x).Èíòåãðàëüíûé îïåðàòîð K′ c ÿäðîì K′ (x, y) íàçûâàåòñÿ òðàíñïîíèðîâàííûì ê èíòåãðàëüíîìóîïåðàòîðó KÒåîðåìà 9.2:1°) èíòåãðàëüíûéîïåðàòîð ñ ïîëÿðíûì ÿäðîì ( è K′ ) - îãðàíè÷åííûé îïåðàòîð â ïðîñòàíñòâå C(G)∫∥K∥C(G) 6 supx∈G|K(x, y)|dyG2°) ∀ϵ > 0 K ïðåäñòàâèì â âèäå: K = K1,ϵ + K2,ϵ , ïðè÷åì ∥K2,ϵ ∥C(G) 6 ϵ;K1,ϵ - èíòåãðàëüíûé îïåðàòîð ñ íåïðåðûâíûì ÿäðîìK2,ϵ - èíòåãðàëüíûé îïåðàòîð ñ ïîëÿðíûì ÿäðîì31′∥K2,ϵ∥C(G) 6 ϵÄîêàçàòåëüñòâî:Ðàññìîòðèì ψ(y) = K(x, y)· u(y), y ∈ G (∀x ∈ G)1) y ∈ G\{x}, òî ψ(y) ∈ C(G\{x})∫B2)|ψ(y)| = |K(x, y)|· |u(y)| 6 |x − y|α ∥u(y)∥C(G) ⇒∫∃φ(x) =|ψ(y)|dy < ∞∫K(x, y)u(y)dy =Gψ(y)dy ∀x ∈ GGÂûáåðåì ïðîèçâîëüíîå ìàëåíüêîå δ > 0K(x, y) = Kδ1 (x, y) + Kδ2 (x, y))(1æ(x, y),Kδ1 (x, y) =|x − y|α δãäå:1, |x − y| > δ1 |x − y|α− íåïðåðûâíàÿ δ= α1|x − y| δ α , |x − y| < δδ0, |x − y| > δ[]11Kδ2 (x, y) = æ(x, y) |x − y|α − δα , |x − y| < δ()èíòåãðàëüíûå îïåðàòîðû Kδ1 , Kδ2Âîçüì¼ì ïðîèçâîëüíóþ u(x) ∈∫C(G)|Kδ2 u(x)|= |Ku(x) −Kδ1 (x)|= ñðåçêà]11æ(x, y)u(y)dy 6 B∥u∥C(G)−|x − y|α δαG∩{|x−y|<δ}∫6 B∥u∥C(G)|x−y|<δdy= B∥u∥C(G) ·|x − y|α∫|z|<δ- íå çàâèñèò îò x∫[dy6|x − y|αG∩{|x−y|<δ}dz= B∥u∥C(G) · S1 ·|z|α∫δρn−1−α dρ =0BS1 n−αδ ∥u∥C(G)(n − α)BS1 n−αδ(n − α)BS1 n−αmax |Ku − Kδ1 u| 6δ(n− α)x∈G∥Kδ2 ∥C(G) 6∥K − Kδ1 ∥C(G) → 0ïðè δ → 0∥K∥C(G) 6 ∥Kδ1 + Kδ2 ∥C(G) 6 ∥Kδ1 ∥C(G) + ∥Kδ2 ∥C(G) 6 const , òàê êàê∫∫∫dydy(diam G)n−α∥K∥C(G) 6 supx∈G|K(x, y)|dy 6 B· sup6B·sup6 B· S1αα|x − y||x − y|(n − α)x∈Gx∈GGG|x−y|6diam G∫⟨ ⟩Ââåä¼ì â G áèëèíåéíóþ ôîðìó: u, v = u(x)v(x)dx, u, v ∈ C(G)GËåììà 9.5: Ïóñòü K - èíòåãðàëüíûéîïåðàòîðÿäðîì, à K′ - òðàíñïîíèðîâàííûé⟨⟩⟨ ñ ïîëÿðíûì⟩′îïåðàòîð.
Òîãäà∀u(x), v(x) ∈ C(G) Ku, v = u, K v∫ ∫∫∫∫∫⟨=⟨(⟩Ku, v =u, K′ v⟩G)K(x, y)u(y)dy v(x)dx =G[]K(x, y)v(x)dx dy =u(y)·GG[]K(x, y)v(y)dy dx =u(x)·GG(Çäåñü ìû èñïîëüçîâàëè òåîðåìó Ôóáèíè-Òîíåëëè î çàìåíå ïåðåìåííûõ)Èíòåãðàëüíûå óðàâíåíèÿ ñ ìàëûìè ïî íîðìå èíòåãðàëüíûìè îïåðàòîðàìè.Îïðåäåëåíèå: Ïóñòü E - ëèíåéíîå íîðìèðîâàííîå ïðîñòðàíñòâî. Ðÿäíîðìàëüíî ñõîäÿùèìñÿ, åñëè ñõîäèòñÿ ðÿä∞∑∞∑k=0∥uk ∥k=032uk , uk ∈ EíàçûâàåòñÿËåììà 9.6: Åñëè ðÿä ñõîäèòñÿ íîðìàëüíî â áàíàõîâîì ïðîñòðàíñòâå, òî îí ñõîäèòñÿ (òî åñòü ∃ s ∈ E,n∞∑∑òàêîé ÷òî sn = uk → s ïðè n → ∞ è ∥s∥ = ∥uk ∥)k=0k=0Äîêàçàòåëüñòâî:m∑∀ϵ > 0 ∃N(ϵ) > 0, òàêîå ÷òî ∀m > n > N(ϵ) →∥uk ∥ < ϵ - ýòî ðàâíîìåðíàÿ ñõîäèìîñòü ðÿäà(??) ∑mm∑∥sm − sn ∥ = uk 6∥uk ∥ < ϵk=n+1k=n+1òàê êàê ïðîñòðàíñòâî Áàíàõîâî, òî ýòà ôóíäàìåíòàëüíàÿk=n+1ïîñëåäîâàòåëüíîñòü, è îíà ñõîäèòñÿ ê íåêîòîðîìó ýëåìåíòó ïðîñòðàíñòâà s ∑n∞n∑∑∥uk ∥ + ∥s − sn ∥ 6∥uk ∥ + ∥s − sn ∥uk + ∥s − sn ∥ 6∥s∥ = ∥s − sn + sn ∥ 6 ∥sn ∥ + ∥s − sn ∥ 6 ∫(∗)u(x) = λk=0k=0k=0K(x, y)u(y)dy + f (x); x ∈ GGÒåîðåìà 9.3: Ïóñòü â èíòåãðàëüíîì óðàâíåíèè (∗) ÿäðî ïîëÿðíîå è òàêîå, ÷òî |λ|· ∥K∥C(G) < 1Òîãäà:1°) èíòåãðàëüíîå óðàâíåíèå (∗) èìååò åäèíñòâåííîå ðåøåíèå u(x) ∈ C(G) ∀ f (x) ∈ C(G).
Ýòî ðåøåíèåäà¼òñÿ (ïðè ôèêñèðîâàííîì λ) íîðìàëüíî ñõîäÿùèìñÿ ðÿäîì Íåéìàíà:u(x) = f (x) +∞∑λ j K j f (x) =j=1∞∑λ j K j f (x) x ∈ Gj=02°) Îïåðàòîð (I − λK) îòîáðàæàåò(I − ΛK)−1 , è ñïðàâåäëèâà îöåíêà:1(I − λK)−1 6C(G)1 − |λ|· ∥K∥C(G)âñ¼ C(G) íà âñ¼ C(G), èìååò íåïðåðûâíûé îáðàòíûé îïåðàòîð1)λK - ñæèìàþùèé îïåðàòîð: ∥λK∥ = |λ|· ∥K∥ < 1Èñïîëüçóåì ìåòîä ïðèáëèæåíèé:u0 (x) = f (x); u1 (x) = f (x) + λKu0 (x) = f (x) + λK f (x)u2 (x) = f (x) = λKu1 (x) = f (x) + λK f (x) + λ2 K2 f (x)N∑uN (x) = f (x) + λKuN−1 (x) = f (x) +λ j K j f (x)j=11)âñå ui (x) - íåïðåðûâíûå (÷àñòè÷íûå ñóììû ðÿäà Íåéìàíà, λ - ôèêñèðîâàííîå)λ j K j f (x)C(G)∞∑( ) j j j = λ j · K j f (x)C(G) 6 λ · KC(G) · f C(G) = λ· KC(G) · f C(G)∥λ j K j f (x)∥C(G) 6∞[∑j=0](|λ|· ∥K∥C(G) ) j · ∥ f ∥C(G) 6j=01· ∥ f ∥C(G)1 − |λ|· ∥K∥C(G)ïðè N → ∞ uN (x) → u(x) = f (x) + λ· Ku(x)À ýòî è åñòü âûïîëíåíèå íàøåãî èíòåãðàëüíîãî îïåðàòîðà.Ïóñòü åñòü 2 ðåøåíèÿ: v(x) = uI (x) − uII (x)v(x) = λKv(x) ⇒ ∥v∥C(G) = |λ|· ∥Kv(x)∥C(G) 6 |λ|· ∥K∥C(G) · ∥v∥C(G) ,[]1 − |λ|· ∥K∥C(G) · ∥v∥C(G) 6 0Ïåðâàÿ ñêîáêà > 0, âòîðàÿ 6 0, îòñþäà ∥v∥C(G) = 0u(x) = λKu(x) + f (x)à)(I − λK)u(x) = f (x)á)u(x) − (I − λK)−1 f (x)Îöåíèì îïåðàòîð (I − λK)−1 :33îòñþäà−1∥(I − λK)f (x)∥C(G) − ∥u(x)∥C(G)6C(G)j=0Ëåììà 9.3:à)∀a(x), b(x) ∈ C(G)â êðóãå ∑∞j j=λ K f (x)∞∑∥λ j K j f (x)∥C(G) 6k=0⟨⟩ ∫ [](I − λK)−1 a, b =(I − λK)−1 a(x) b(x)dx1· ∥ f ∥C(G)1 − |λ|· ∥K∥C(G)- ÿâëÿåòñÿ ðåãóëÿðíîé ôóíêöèåé îò λG1|λ| <∥K∥C(G)á)Åñëè |λ|· ∥K∥C(G) < 1, òî⟨⟩ ⟨⟩(I − λK)−1 a, b = a, (I − λK′ )−1 bÄîêàçàòåëüñòâî: ∞a ∈ C(G), b ∈ C(G)(I − λK)−1 a(x) =∞∑j=0∑λ j K j a(x)j=0λ j K j a(x)b(x)∫ [- ñõîäèòñÿ ðàâíîìåðíî⇒åãî ìîæíî ïî÷ëåííî èíòåãðèðîâàòü.∫ ∑∫∞∞∑](I − λK)−1 a(x) b(x)dx =λ j K j a(x)b(x)dx =λ j [K j a(x)]b(x)dxj=0- ñòåïåííîé ðÿäj=0GGG ∫j j[K j a(x)]b(x)dx 6 |λ| j · ∥K j a∥C(G) · ∥b∥C(G) · mes G 6 |λ| j · ∥K∥λC(G)· ∥a∥C(G) · ∥b∥C(G) · mes G =G()j= |λ|· ∥K∥C(G) · ∥a∥C(G) · ∥b∥C(G) · mes G|λ| 61− ϵ,∥K∥C(G)(I − λK′ )−1 b(x) =â ýòîì êðóãå ôóíêöèÿ áóäåò ðåãóëÿðíîé.∞∑λ j (K′ ) j b(x)- ðÿä Íåéìàíàj=0⟨⟩⟨⟩Ka, b = a, K′ b⟨⟩⟨⟩K2 a, b = a, (K′ )2 b...⟨⟩⟨⟩K j a, b = a, (K′ ) j b⟨∞∞∞⟩ ∑⟨⟩ ∑⟨⟩ ⟨ ∑⟩ ⟨⟩jjj′ j(I − λK) a, b =λ K a, b =λ a, (K ) b = a,λ j (K′ ) j b = a, (I − λK′ )−1 b−1j=0j=0j=0Èíòåãðàëüíûå óðàâíåíèÿ ñ âûðîæäåííûìè ÿäðàìè.Îïðåäåëåíèå: Èíòåãðàëüíîå óðàâíåíèå v(x) = λ∫K(y, x)v(y)dy + g(x); x ∈ G∫Gíàçûâàåòñÿ ñîþçíûì èíòåãðàëüíûì óðàâíåíèåì ê(∗) u(x) = λK(x, y)u(y)dy + f (x); x ∈ GGK(y, x) = K′ (x, y)Îïðåäåëåíèå: ßäðî K(x, y) ∈ C(G × G) íàçûâàåòñÿ âûðîæäåííûì, åñëè K(x, y) =a j (x) ∈ C(G); b j (y) ∈ C(G); Nj=1- êîíå÷íî{a1 (x), .