Lektsii_zubova_2 (1181474), страница 2
Текст из файла (страница 2)
. , en , . . . } = {sin sin x, sinx, . . . ,x, . . . }ÿâëÿåòñÿ îðòîãîíàëüíîé ñèñòåìîélllôóíêöèé îòíîñèòåëüíî ñêàëÿðíîãî ïðîèçâåäåíèÿ â L2 , òàê êàê ýòè ôóíêöèè ÿâëÿþòñÿ ñîáñòâåííûìèôóíêöèÿìè îïåðàòîðà "−∆" ñ îäíîðîäíûìè óñëîâèÿìè Äèðèõëå, êîòîðûé â ñâîþ î÷åðåäü ñèììåòðè÷åíâ L2 :∫l(ei , e j ) =sin02) (e(v,,eek )) = 2lkk3) Ak = 2l∫l∫lv(y) sinπky· dy = Ak ,l0, i , jπjπix sin x· dx = l , i= jll2ïî íåðàâåíñòâó Áåññåëÿ:πky· dy,l|Ak |2 < ∞k=10v(y) sin∞∑èíòåãðèðóåì ïî ÷àñòÿì:0∫l2 lπkπk l 2 lAk = −v′ (y) cosv(y) cosy +y· dyl πkl 0 l πklÏåðâîå ñëàãàåìîå ðàâíî 0 â ñèëó âûáîðà ôóíêöèè v0Ak =lαk ,πkãäåαk =2l∫lv′ (y) cos⇒πky· dyl04))Íà [0, l] {g1 , g2 , . . .
, gn , . . . } = {cos πl x, cos 2πl x, . . . , cos nπl x, . . . } ÿâëÿåòñÿ îðòîãîíàëüíîé ñèñòåìîéôóíêöèé îòíîñèòåëüíî ñêàëÿðíîãî ïðîèçâåäåíèÿ â L2 , òàê êàê ýòè ôóíêöèè ÿâëÿþòñÿ ñîáñòâåííûìèôóíêöèÿìè îïåðàòîðà "−∆" ñ îäíîðîäíûìè óñëîâèÿìè Íåéìàíà, êîòîðûé â ñâîþ î÷åðåäü ñèììåòðè÷åíâ L2 :∫l(gi , g j ) =cos0È ïî íåðàâåíñòâó Áåññåëÿ:∞∑0, i , jπjπix cos x· dx = l , i= jll2|αk |2 < ∞k=1Òåïåðü äîêàæåì, ÷òî∞∑|Ak | < ∞k=1∞∑∞∑lπ21Ak ==αk ;< ∞;πk6k2k=1k=1∞∞ ∑l ∑ 1 αk < ∞ ïî ëåììå|Ak | =πkk=1k=1∞∑|αk |2 < ∞⇒k=15.3∞∑Òåì ñàìûì ìû äîêàçàëè, ÷òî φ(x) = Ak sin πkxíåïðåðûâíàÿ ôóíêöèÿ.lk=1Íàì íóæíî äîêàçàòü áîëüøåå: ÷òî îíà ðàâíà v(x). Äëÿ ýòîãî èñïîëüçóåì ðÿäû Ôóðüå.Ïîñòðîèì ñëåäóþùóþ ôóíêöèþ:{ṽ(x) =v(x), x ∈ [0, l]−v(−x), x ∈ [−l, 0]6ṽ(x + 2l) = ṽ(x)Òîãäà ṽ(x)∞ ∈ C1 (R1 )ṽ(x) =ãk =1l1b̃k =l()ã0 ∑πkπk+ãk cosx + b̃k sinx2llk=1∫lṽ(y) cos−l∫l−lπky· dy = 0l2πkṽ(y) siny· dy =llÒî åñòü v(x) =∞∑k=1(ïîäûíòåãðàëüíîå âûðàæåíèå íå÷¼òíî)∫lv(y) sinπky· dy = Akl(ïîäûíòåãðàëüíîå âûðàæåíèå íå÷¼òíî)0πkAk sinx = φ(x)lÑôîðìóëèðóåì ñëåäóþùóþ òåîðåìó:Òåîðåìà 5.2: Ïóñòü â ñìåøàííîé çàäà÷å:ut − a2 uxx = 0, t > 0, x ∈ (0, l) u = u (x), x ∈ [0, l]0t=0 u = 0; u = 0; t > 0x=0(∗)x=lÏðè÷åì u0 (x) ∈ C1 ([0, l]) è u0 (0) = u0 (l) = 0Òîãäà:∞∑1)ðÿä u(t, x) = Ak e−( aπk ) t sin πkl x, t > 0, 0 6 x 6 l ñõîäèòñÿ àáñîëþòíî è ðàâíîìåðíî íà QTl2k=12)u(t, x) ∈ C(QT ) ∩ C∞ (QT ), (∀T > 0)3)u(t, x) - êëàññè÷åñêîå ðåøåíèå çàäà÷è (*)4)Ïðè t > 0 ëþáàÿ ÷àñòíàÿ ïðîèçâîäíàÿ îò u(t, x) ìîæåò áûòü íàéäåíà ñîîòâåòñòâóþùèì äèôôåðåíöèðîâàíèåì ïîä çíàêîì ñóììû.Äîêàçàòåëüñòâî:1)Ak = 2l∞∑∫lu0 (y) sinπky· dy,l0|Ak | < ∞;u0 (x) =∞∑ïî ëåììå 5.4 èìååì:Ak sinπkxlÄîêàçàííûå ðàíåå ôàêòû çàâåðøàþò äîêàçàòåëüñòâî.Íåîäíîðîäíûé ñëó÷àék=1k=1ut − a2 uxx = f (t, x), t > 0, x ∈ (0, l) u = 0, x ∈ [0, l]t=0 u = 0; u = 0; t > 0x=0x=lÂñïîìíèì ôàêòû èç êóðñà äèôôåðåíöèàëüíûõ óðàâíåíèé:−→−u (t) = B→−u (t) + →f (t),t→−u = →−u0t=00<t<T- ìàòðèöà n × n.
Ïóñòü îíà ñèììåòðè÷íà.−e = λ →−Òîãäà ñóùåñòâóåòáàçèñ èç ñîáñòâåííûõâåêòîðîâ: B→kk eknn∑∑−−e ;→−u =−eÒîãäà →f (t) =φk (t)→µk→0kkBk=1Ðåøåíèå èùåì â−u (t) =âèäå: →n∑k=1−eck (t)→kk=17(∗∗) u1 (t)→−u (t) = .. . un (t) ∑nnn∑∑−e = B→−e +−e′ →c(t)c(t)φk (t)→kkkkk k=1k=1k=1nn∑∑→−e =−ec(0)µk→kkkk=1 ∑nnn∑∑−e =→−e +−e′ →c(t)c(t)λφk (t)→kkkkkk k=1k=1k=1nn∑∑→−e =−ec(0)µk→kkk⇒k=1k=1 ∑n []→−e = 0′c(t)−λc(t)−φ(t)kkkk k=1n [∑]−ck (0) − µk →ek=0{⇒k=1c′k (t) = λk ck (t) + φ(t)ck (0) = µkk = 1, nk=1Âåðí¼ìñÿ ê íàøåé çàäà÷å:Âñïîìíèì, êàê ìû îïðåäåëÿëè îïåðàòîð "−∆"D(A) = {X(x) : X(x) ∈ C2 ([0, l]), X(0) = 0; X(l) = 0}2"−∆"= − dxd 2 : X(x) → −X′′ (x)Ïðåäïîëîæèì, ÷òî:{f (t, x) =2fk (t) =l∞∑fk (t)Xk (x) =∞∑2f (t, y)Xk (y)dy =lXk (x) = sinπkx, k ∈ Nl(∗ ∗ ∗)πkxl∫l0)πk 2;lf (x, t), fx (t, x), fxx (t, x) ∈ C(QT )f (t, 0) = 0; f (t, l) = 0 ∀t ∈ [0, T]fk (t) sink=1k=1∫l(λk =f (t, y) sinπky· dyl0Ðåøåíèå áóäåì èñêàòü â âèäå:u(t, x) =∞∑θk (t)Xk (t) =∞∑k=1θk (t) sink=1πkxlÏîêà áóäåì äîïóñêàòü íåêîòîðûå âîëüíîñòè, ñòðîãîå îáîñíîâàíèå äàäèì ïîçæå.ut − a2 uxx − f (t, x) =∞∑θ′k (t)Xk (x) − a2∞[∑Ôîðìàëüíî ïðîäèôôåðåíöèðóåì:k=1θk (t)Xk (t)]−xxk=1∞∑fk (t)Xk (x)k=1∞∞ [∞[ ( )2]∑∑∑]]πkθ′k (t) − fk (t) Xk (x) − a2θk (t)Xk′′ (x) =θ′k (t) − fk (t) Xk (x) − a2θk (t) −Xk (x) =lk=1k=1k=1k=1∞ []∑2 2πk=θ′k (t) + 2 a2 θk (t) − fk (t) Xk (x) = 0lk=1∞∑u t=0 = u(0, x) =θk (0)Xk (0) = 00=∞ [∑k=1Îòñþäà, äîìíàæàÿ íà Xk (x) ñêàëÿðíî, è èñïîëüçóÿ îðòàãîíàëüíîñòü, èìååì:)(aπk 2 θ′k (t) +θk (t) = fk (t)l θk (0) = 0k = 1, 2, .
. .Ïîëó÷èëè ñåðèþ çàäà÷ Êîøè.1)θ̃′k (t) +()aπk 2θ̃k (t) = 0lθk (t) = Ck (t)e−(C′k (t)· e−(aπk )2 tlaπk )2 tl⇒ θ̃k (t) = Ck e−(aπk )2 tl- ìåòîä âàðèàöèè ïîñòîÿííîãî. Ïîäñòàâëÿåì â óðàâíåíèå:− Ck (t)· e−(aπk )2 tl·(aπkl)2+()aπk 2aπk 2· Ck (t)· e−( l ) t = fk (t)l8⇒⇒−( aπk )2 tC′k (t)e lθk (t) =∫t= fk (t)aπk 2e−( l ) t[ ∫t0òî åñòü: u(t, x) v⇒Ck (t) =e0aπk 2e+( l ) τ fk (τ)dτ∞ [∫∑k=1+( aπk )2 τlfk (τ)dτ⇒]+C, èç ãðàíè÷íûõ óñëîâèé C = 0]te+(+Caπk )2 (t−τ)lfk (τ)dτsinπkxl(∗ ∗ ∗∗)0Êàíäèäàò íà êëàññè÷åñêîå ðåøåíèå. Ñôîðìóëèðóåì è äîêàæåì ñëåäóþùóþ òåîðåìó:Òåîðåìà 5.3: Ïóñòü â ñìåøàííîé çàäà÷å (∗∗) ôóíêöèÿ f (t, x) óäîâëåòâîðÿåò óñëîâèÿì (∗ ∗ ∗), òîãäà1) Ðÿä (∗ ∗ ∗∗) ñõîäèòñÿ àáñîëþòíî è ðàâíîìåðíî â QT2)u(t, x) ∈ C1,2t,x (QT )3)u(t, x) - êëàññè÷åñêîå ðåøåíèå ñìåøàííîé çàäà÷è (∗∗)4)×àñòíûå ïðîèçâîäíûå ut , ux , uxx ìîæíî íàõîäèòü ñ ïîìîùüþ ïî÷ëåííîãî äèôôåðåíöèðîâàíèÿ ðÿäà(∗ ∗ ∗∗)Äîêàçàòåëüñòâî:2fk (t) =l∫l0=(lπk)2∫lπk2 lπk ll 2πkf (t, y) siny· dy =f (t, y) cosy +f y (t, y) cosy· dy =ll πkl 0 πk ll0l ( )2 ∫ l( )22πkπkll 2φk (t),f y (t, y) siny· dy −f yy (t, y) siny· dy = −llπk llπk00ãäå φk (t) = 2l fyy (t, y) sin πkl y· dy∞∑Ïî íåðàâåíñòâó Áåññåëÿ: |φk (t)|2 < ∞k=1∫l2Mdy = 2M| fxx (t, x)| 6 M ⇒ |φk (t)| 6l0( )2l 1| fk (t)| 6 2Mπ k2 ∫ l ( )2 ∫T 2Ml2 Tlπk −( aπk )2 (t−τ)dτ = 2 2x 6 2Mfk (τ)· dτ· sin e l l πkπk- ñõîäèòñÿ.Çíà÷èò èíòåãðàë ñõîäèòñÿ àáñîëþòíî è ðàâíîìåðíî è áóäåò íåïðåðûâíîé ôóíêöèåé, çíà÷èò îíà óäîâëåòâîðÿåò íà÷àëüíûì è ãðàíè÷íûì óñëîâèÿì â ñèëó íåïðåðûâíîñòè.00Òî åñòü ìû äîêàçàëè, ÷òî u(t, x) ∈ C(QT )Äîêàæåì âòîðîé ïóíêò:t∫t∞∞ ∫ [()2( ) ]∑∑]πkπkπkπk−( aπk )2 (t−τ) aπk−( aπk )2 (t−τ)2ut vfk (t)− e lxvfk (t) sinx−ae lfk (τ)· dτ sinxfk (τ)· dτ sinlllllk=1k=1k=100( )2lπkà)Îöåíèì ÷ëåí ïåðâîãî ðÿäà: fk (t) sin l x 6 2M πk∞ [∑Ìû çàìàæîðèðîâàëè ýòîò ðÿä ñõîäÿùåéñÿ ÷èñëîâîé ïîñëåäîâàòåëüíîñòüþ, çíà÷èò èñõîäíûé ðÿä ñõîäèòñÿ àáñîëþòíî è ðàâíîìåðíî.á)Àíàëîãè÷íî îöåíèì ÷ëåí âòîðîãî ðÿäà:aπk )2t( ∫t ∫t( )) ∫l(πkπk l 2−( aπk )2 (t−τ)−( aπk )2 (t−τ)fk (τ)· dτ· sinx 6 2M e l· dτ = 2M e lll aπk06 2M(laπ)21k2∫∞e−η · dη =(laπ)2002Mk209e−η · dη 6Òî åñòü ìû äîêàçàëè àíàëîãè÷íûé ôàêò è ïðî âòîðîé ðÿä.
Çíà÷èò è ïðî ñóììó ýòèõ äâóõ ðÿäîâ.Ñëåäîâàòåëüíî ôîðìàëüíî ïðîäèôôåðåíöèðîâàííûé ðÿä ñõîäèòñÿ ðàâíîìåðíî è àáñîëþòíî, ïîýòîìóèìååò ìåñòî ðàâåíñòâî:ut =∞∑k=1∑πkfk (t) sinx − a2l∞∫t [( ) ]aπk 2πkπke−( l ) (t−τ) fk (τ)· dτ sinxllk=1 0Àíàëîãè÷íî íàõîäèì ux , uxx :uxx (t, x) = −t∞ ∫ [∑e−(aπk )2 (t−τ)lfk (τ)k=1 0() ]πkπk· dτ sinxlluxx ∈ C(QT )Òî åñòü ìû ïîêàçàëè, ÷òî u(t, x) ∈ C1,2t,x (QT )Òîãäà:ut − a uxx − f (t, x) =2∞∑k=1+∞∑∫t[e−(aπk )2 (t−τ)lfk (τ)(k=1 0∑πkx − a2fk (t) sinl∞∫t [( ) ]πkπk−( aπk )2 (t−τ)· dτ sinx+e lfk (τ)llk=1 0∞) ]∑πkπkπk· dτ sinx−fk (t) sinx = 0lllk=1÷òî çàâåðøàåò äîêàçàòåëüñòâî.Òåïåðü ïîñìîòðèì íà ïîëíîñòüþ íåîäíîðîäíóþ çàäà÷ó:ut − a2 uxx = f (t, x), (t, x) ∈ QT u = u (x), 0 6 x 6 l0t=0 u = ψ (t), u = ψ (t), 0 6 t 6 T01x=0{u0 (0) = ψ0 (0)u0 (l) = ψ1 (0)−óñëîâèÿ ñîãëàñîâàíèÿx=lÏóñòü ψ0 , ψ1 - äîñòàòî÷íî ãëàäêèå.Ñâîäèì ê çàäà÷å ñ îäíîðîäíûìè êðàåâûìè óñëîâèÿìè.
Äëÿ ýòîãî èùåì òàêóþ ôóíêöèþòàêóþ, ÷òî{W(t, x)W(t, 0) = ψ0 (t)W(t, l) = ψ1 (t)u(t, x) = W(t, x) + v(t, x), [ãäå v(t,] x) - ðåøåíèå çàäà÷è ñ îäíîðîäíûìè ãðàíè÷íûìè óñëîâèÿìè.xÂîçüì¼ì W(t, x) = ψ0 (t) 1 − l + ψ1 (t)· xlÏî òåîðåìå 5.2 ìû áðàëè u0 (x) ∈ C1 . Äàëåå òàê êàê ìû çàíóëèëè êðàåâûå óñëîâèÿ, ìû óìååì ðåøàòüçàäà÷ó â ñàìîì îáùåì âèäå.Òåïåðü ñôîðìóëèðóåì, è äîêàæåì ñóùåñòâîâàíèå ðåøåíèÿ â áîëåå øèðîêîì êëàññå ôóíêöèé.Ïóñòü{u0 (x) ∈ C([0, l]) & u0 (0) = 0, u0 (l) = 0f (t, x), fx (t, x) ∈ C(QT ) & f x=0 = 0, f x=l = 0Òîãäà u(t, x) ∈ C1,2t,x (QT ) ∩ C(QT )Ïðîäîëæèì u0 (x) èÒîãäà û0 (x) ∈ C(R1 ),{f (t, x)íå÷¼òíûì îáðàçîì, è cäåëàåì 2l ïåðèîäè÷íîé.fˆ(t, x) ∈ C1x (R1 )ût − a2 ûxx = fˆ(t, x), 0 < t < T; x ∈ R1ût=0 = û0 (x)Òîãäà äëÿ å¼ ðåøåíèÿ ñïðàâåäëèâà ôîðìóëà Ïóàññîíà:10−çàäà÷à Êîøè.û(t, x) = √14πa2 t∫e−(x−ξ)24a2 tû0 (ξ)dξ +R1∫t [0∫1√4πa2 (t − τ)−e(x−ξ)24a2 (t−τ)]fˆ0 (ξ, τ)dξ dτR1 ñèëó ïðèìå÷àíèÿ ê òåîðåìå 4.3 ýòà ôîðìóëà ñïðàâåäëèâà äëÿ óêàçàíûõ óñëîâèé.
Òåïåðü "âûðåçàâ"èç ïîëó÷åííîãî ðåøåíèÿ ñîîòâåòñòâóþùèé êóñîê, ìû ïîëó÷èì ðåøåíèÿ äëÿ çàäà÷è òåïëîïðîâîäíîñòè íà îòðåçêå.Ïðè u0 (x) ∈ C([0, l]) ìåòîä Ôóðüå íåëüçÿ îáîñíîâàòü. Òî åñòü ðåøåíèå áóäåò, íî êàê åãî èñêàòü ìû íåçíàåì, ïî êðàéíåé ìåðå íå âñåãäà ìîæíî óòâåðæäàòü, ÷òî îíî ïðåäñòàâèìî â âèäå ðÿäà.Ñìåøàííàÿ çàäà÷à äëÿ óðàâíåíèÿ êîëåáàíèé ñòðóíû íà îòðåçêå.utt − a2 uxx = f (t, x) (t, x) ∈ QT = (0, T) × (0, l) u = u (x); u = u (x), x ∈ [0, l]0t t=01t=0 u = ψ (t); u = ψ (t), t ∈ [0, T]01x=0(∗)x=lÎïðåäåëåíèå: Êëàññè÷åñêèì ðåøåíèåì çàäà÷è (∗) íàçûâàåòñÿ u(t, x) ∈ C1 (QT ) ∩ C2 (QT ), óäîâëåòâîðÿþùàÿ óðàâíåíèþ, íà÷àëüíûì è ãðàíè÷íûì óñëîâèÿì.Òåîðåìà 5.4: íå ìîæåò ñóùåñòâîâàòü áîëåå îäíîãî êëàññè÷åñêîãî ðåøåíèÿ çàäà÷è (*).Ïðåäïîëîæèì ïðîòèâíîå: ïóñòü ñóùåñòâóåò äâà êëàññè÷åñêèõ ðåøåíèÿ uI (t, x), uII (t, x) :v(t, x) = uI (t, x) − uII (t, x)Òîãäà v(t, x) - ðåøåíèåîäíîðîäíîé çàäà÷è, òî åñòü:vtt − a2 vxx = 0vt=0 = 0, vtt=0 = 0v x=0 = 0, v x=l = 0Ðàññìîòðèì I(t, x) = vt (t, x)[vtt (t, x) − a2 vxx (t, x)]11I = vt [vtt − a2 vxx ] = vt vtt − a2 vt vxx = (v2t )t − a2 (vt vx )x + a2 (vx vxt ) = (v2t )t + a2 (v2x )t − a2 (vt vx )x =22]1[= (v2t + a2 v2x ) − a2 (vt vx )x ≡ 0, ∀(t, x) ∈ QTt2Ìû ïðèâåëè íàøå óðàâíåíèå ê òàê íàçûâàåìîìó äèâåðãåíöèîííîìó âèäó.