В.М. Тихомиров - Вариационное исчисление и оптимальное управление (1156154), страница 3
Текст из файла (страница 3)
¡®p®¬ ¬®¨â¥«¥© £p (®¡®§ ç¥ë¬ ᨬ¢®«®¬ λ) §¤¥áì ï¥âáï ¯ p : ¢¥ªâ®p-äãªæ¨ïp : [t0 , t1 ℄ → (IRn )′ ¨ ç¨á«® λ0 .DZ¥à¥¬¥ë¥ x ¢ § ¤ çe (P4 ) §ë¢ îâ ä §®¢ë¬¨, u | ã¯à ¢«¥¨ï¬¨. DZ àã (x(·), u(·)), 㤮¢«¥â¢®pïîéãî ¤¨ää¥p¥æ¨ «ì®© á¢ï§¨x_ (t) = ϕ(t, x(t), u(t)) ¨ £à ¨çë¬ ãá«®¢¨ï¬, ¡ã¤¥¬ §ë¢ âì ¤®¯ãá⨬®© ¨«¨ ¤®¯ãáâ¨¬ë¬ ¯à®æ¥áᮬ. ¤ çã (P4 ) ¡ã¤¥¬ à áᬠâਢ âì ¢ ¯à®áâà á⢥Z = C 1 ([t0 , t1 ℄, IRn ) × C ([t0 , t1 ℄, IRr ),14¢ ª®â®à®¬ ä §®¢ë¥ ¯¥à¥¬¥ë¥ x(·) | ¥¯à¥à뢮-¤¨ää¥à¥æ¨àã¥¬ë¥®â®¡à ¥¨ï ¨§ [t0 , t1 ℄ ¢ IRn , ã¯à ¢«¥¨ï u(·) | ¥¯à¥àë¢ë¥ ®â®¡à ¥¨ï ¨§ [t0 , t1 ℄ ¢ IRr . ®à¬ ¢ Z ®¯à¥¤¥«ï¥âáï â ª:k(x(·), u(·)kZ= max(kx(·)kC ([t0 ,t1 ℄,IRn ) , kx_ (·)kC ([t0 ,t1 ℄,IRn ) , ku(·)kC ([t0 ,t1 ℄,IRr ) ).®ª «ìë© íªáâ६㬠¢ ¯à®áâà á⢥ Z §ë¢ ¥âáï á« ¡ë¬ «®ª «ìë¬ íªáâ६㬮¬ ¢ § ¤ ç¥ (P4 ).
¤¨¬ à §¢ñàã⮥ ®¯à¥¤¥«¥¨¥.®¯ãáâ¨¬ë© ¯à®æ¥áá (xb(·), ub(·)) §ë¢ îâ á« ¡ë¬ ¬¨(P4 ), ¥á«¨ ¤«ï ¥ª®â®à®£®ε > 0 ¨ «î¡®£® ¤®¯ãá⨬®£® ¯à®æ¥áá (x(·), u(·)) â ª®£®, ç⮯।¥«¥¨¥ 4.¨¬ã¬®¬ (¬ ªá¨¬ã¬®¬) ¢ § ¤ ç¥ £à b(·), ub(·))kZ < ε,k(x(·), u(·)) − (x¢ë¯®«¥® ¥à ¢¥á⢮:b(·), ub(·), ub(·)) (J (x(·), u(·)) ≤ J (xb(·))).J (x(·), u(·)) ≥ J (x⬥⨬, çâ® ¯à®á⥩è ï § ¤ ç ¢ ਠ樮®£® ¨áç¨á«¥¨ï ï¥âáï ç áâë¬ á«ãç ¥¬ § ¤ ç¨ £à . ¤ ç £à ®å¢ âë¢ ¥â(¯®¬¨¬® ¯à®á⥩襩 § ¤ ç¨) ¬®¥á⢮ ¤à㣨å, à áᬠâਢ ¥¬ëå ¢ ¢ ਠ樮®¬ ¨áç¬á«¥¨¨ (¨§®¯¥à¨¬¥âà¨ç¥áª¨¥ § ¤ ç¨, § ¤ ç¨ á® áâ à訬¨ ¯à®¨§¢®¤ë¬¨ ¨ â. ¯.). ¯®¬¨ ¨ï. ë ¡ã¤¥¬ ¡¥§ ¤®ª § ⥫ìá⢠¨á¯®«ì§®¢ âì á«¥¤ãî騥 १ã«ìâ âë ¨§ ⥮ਨ ®¡ëª®¢¥ëå ¤¨ää¥à¥æ¨ «ìëå ãà ¢¥¨©:1.
¥®à¥¬ áãé¥á⢮¢ ¨ï ¨ ¥¤¨á⢥®á⨠¢ § ¤ ç¥ ®è¨.2. ¥®à¥¬ ® ¥¯à¥à뢮© § ¢¨á¨¬®á⨠à¥è¥¨ï § ¤ ç¨ ®è¨ ®â¯ à ¬¥â஢ ¨ ç «ìëå ãá«®¢¨©.3. ¥®à¥¬ ® ¤¨ää¥à¥æ¨à㥬®á⨠à¥è¥¨ï § ¤ ç¨ ®è¨ ¯® ¯ à ¬¥âà ¬ ¨ ç «ìë¬ ãá«®¢¨ï¬.4. ¥®à¥¬ ® áãé¥á⢮¢ ¨¨ ¨ ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ ®è¨¤«ï «¨¥©®£® ãà ¢¥¨ï. «¥¥ ¬ë 㯮âॡ«ï¥¬ ᮪p éñë¥ ®¡®§ 票ï:b x (t) = Lx (t, xb x_ (t) = Lx_ (t, xb(t), xb(t)), Lb(t), xb(t)), fbx (t) =b_ (t), ub_ (t), uL¨ â. ¤.b(t), ub(t))fx (t, x151. (ãà ¢¥¨ï ©«¥à { £à ). DZãáâì ¤®¯ãáâ¨¬ë© ¢(P4 ) ¯à®æ¥áá (xb(·), ub(·)) ¤®áâ ¢«ï¥â ¢ í⮩ § ¤ ç¥ á« ¡ë© «®-¥®à¥¬ 4§ ¤ 祪 «ìë© íªáâ६ã¬.®£¤ , ¥á«¨ ¢ë¯®«¥ë ãá«®¢¨ï £« ¤ª®áâ¨, á®-f , fx , fu , ϕ, ϕx ¨ ϕu ¥¯à¥àë¢ë ¢ ®ªà¥áâ®b(t), ub(t)) | t ∈ [t0 , t1 ℄}, â® áãé¥áâ¢ãîâ ç¨á«® λ0 ≥ 0{(t, x¢ á«ãç ¥ ¬¨¨¬ã¬ ¨ λ ≤ 0 ¢ á«ãç ¥ ¬ ªá¨¬ã¬ , ¢¥ªâ®p-äãªæ¨ïp(·) ∈ C 1 ([t0 , t1 ℄, (IRn )′ ) (¥ à ¢ë¥ ®¤®¢à¥¬¥® ã«î) â ª¨¥, çâ® ¢ë¯®«¥ë ãp ¢¥¨ï ©«¥p ¯® x:áâ®ï騥 ¢ ⮬, çâ®á⨠ªà¨¢®©−¨ ¯®u:d bb x (t) = 0 ⇔ p_ = −p · ϕbx (t) + λ0 fbx (t)Lx_ (t) + Ldtb u (t) = 0 ⇔ p(t) · ϕbu (t) = λ0 fbu (t).L®ª § ⥫ìá⢮.(4a)(4b) ç «® ¤®ª § ⥫ìá⢠á室® á ¤®ª § ⥫ìá⢮¬â¥®à¥¬ë 2.1) DZ®áâ஥¨¥ ᥬ¥©á⢠¢ ਠ権.¡®§ 稬 U = {ui (·)}Ni=1 , ui (·) | ¢¥ªâ®à-äãªæ¨¨ ¨§ C ([t0 , t1 ℄, IRr ).¯à¥¤¥«¨¬ ¢ ਠæ¨î uα (·) á«¥¤ãî騬 ®¡à §®¬:b(·) +uα (·) = uα (·; U ) = uNXαi ui (·), α = (α1 , .
. . , αN ).=1¯à¥¤¥«¨¬ xα (·; U ), ª ª à¥è¥¨¥ § ¤ ç¨ ®è¨ ¤«ï ¤¨ää¥à¥æ¨ «ì®£®ãà ¢¥¨ïx_ = ϕ(t, x, uα (·; U ), á ç «ìë¬ ãá«®¢¨¥¬ x(t0 ) = x0 . ᨫã ⥮६ áãé¥á⢮¢ ¨ï, ¥¤¨á⢥®á⨠¨ ¥¯à¥à뢮© § ¢¨á¨¬®á⨠à¥è¥¨ï § ¤ ç¨ ®è¨ ®â ¯ à ¬¥â஢ äãªæ¨ï xα (·; U ) ¯à¨¬ «ëå α ®¯à¥¤¥«¥ ¢áñ¬ [t0 , t1 ℄.DZ®«®¨¬ig0 (α) = g0 (α; U ) = J (xα (·; U ), uα (·; U )) =Zt1t0f (t, xα (t; U ), uα (t; U ))dt.2) ¨ää¥à¥æ¨à®¢ ¨¥ g0 (·; U ) ¨ ¯à¥®¡à §®¢ ¨¥ ¯à®¨§¢®¤®©. ᨫã â¥®à¥¬ë ® ¤¨ää¥à¥æ¨à㥬®á⨠à¥è¥¨ï § ¤ ç¨ ®è¨ ¯®¯ à ¬¥âà ¬ ¯®«ãç ¥¬, çâ® g0 (·; U ) ∈ D1 (0) ¨ ¯à¨ í⮬ ∂α∂ i g0 (0; U ) =R t1 bbt0 (fx (t)y (t; ui (·))+ fu (t)ui (t)))dt (i), £¤¥ y (·; ui (·)) | à¥è¥¨¥ § ¤ ç¨ ®è¨ «¨¥©®£® ãà ¢¥¨ï: y_ = ϕbx (t)y + ϕbu (t)ui (t), y (t0 ; ui (·) = 0 (ª®à४⮠®¯à¥¤¥«ñ®¥ ¢ ᨫã â¥®à¥¬ë ® áãé¥á⢮¢ ¨¨ ¨ ¥¤¨á⢥®áâ¨à¥è¥¨ï § ¤ ç¨ ®è¨ ¤«ï «¨¥©®£® ãà ¢¥¨ï).163) DZ®áâ ®¢ª íªáâ६ «ì®© § ¤ ç¨.¡®§ 稬 ç¥à¥§ gk (·) = gk (·; U ) k-âãî ª®®à¤¨ âã ¢¥ªâ®à x(t1 ; U ) −x1 , 1 ≤ k ≤ m. áᬮâਬ § ¤ çã:g0 (α; U ) → min, gk (α; U ) = 0, 1 ≤ k ≤ m.(PU )Pmãªæ¨ï £à (PU ) ¨¬¥¥â ¢¨¤: L(α, λ(U )) = k=0 λk (U )gk (α).§ ®¯à¥¤¥«¥¨ï 4 á«¥¤ã¥â, çâ® 0 ∈ IRN ï¥âáï «®ª «ìë¬ ¬¨¨¬ã¬®¬ ¢ § ¤ ç¥ (PU ); ¨§ ⥮p¥¬ ® ¥¯p¥p뢮© § ¢¨á¨¬®á⨠᫥¤ã¥â,çâ® L(·, λ(U )) ∈ D1 (0).
§ ⥮६ë 3 á«¥¤ã¥â, çâ® áãé¥áâ¢ã¥â ¢¥ªâ®àλ(U ) (|λ(U )| = 1) â ª®©, çâ® Lα (0, λ(U )) = 0. â® ®§ ç ¥â, çâ®0 = λ0 (U )Zt1t0(fx (t)y (t; ui (·)) + fbu(t)ui (t))dt+mXk=1λk (U ) · yk (t1 ; ui (·)).(iii)®¢®ªã¯®áâì â ª¨å ¢¥ªâ®à®¢ | § ¬ªã⮥ ¯®¤¬®¥á⢮ m-¬¥à®©áä¥àë Sm .4) DZਬ¥¥¨¥ «¥¬¬ë ® æ¥âà¨à®¢ ®© á¨á⥬¥. á®, çâ® ¥á«¨¨¬¥¥âáï k ᥬ¥©á⢠¢ ਠ権, â® ¨§ ¨å ¬®® ®¡à §®¢ âì ¥¤¨ãî¢ à¨ æ¨î, ¤«ï ª®â®à®© ¡ã¤¥â áãé¥á⢮¢ âì ¬®¨â¥«ì £à Sm . DZਬ¥ïï «¥¬¬ã ® æ¥âà¨à®¢ ®© á¨á⥬¥ (ᬠ®«¬®£®à®¢ ¨®¬¨ áâà. 108) ¯®«ã稬, çâ® ¨¬¥¥âáï ¥¤¨ë© ¢¥ªâ®à λb = (λb 0 , λb′ ) =(λb 0 , λb1 , .
. . , λb n ) â ª®©, çâ®nXb i g ′ (0, u(·))λi=0¨«¨, ãç¨âë¢ ï (iii):i0 = λb 0Zt1t0=0∀u(·) ∈ C ([t0 , t1 ℄, IRr )(fx(t)y (t; u(·)) + fbu(t)u(t))dt+λb ′ · y (t1 ; u(·)) ∀u(·) ∈ C ([t0 , t1 ℄, IRr ). (iii)5) ¢¥à襨¥ ¤®ª § ⥫ìá⢠.DZãáâì p(·) | à¥è¥¨¥ § ¤ ç¨ ®è¨ ¤«ï «¨¥©®£® ãà ¢¥¨ï: −p_ =b 0 fbx (t), p(t1 ) = −λb ′ (ª®à४⮠®¯à¥¤¥«ñ®¥ ¢ ᨫã â¥®à¥¬ë ®bx (t) − λpϕáãé¥á⢮¢ ¨¨ ¨ ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ ®è¨ ¤«ï «¨¥©®£®ãà ¢¥¨ï).
ª¨¬ ®¡à §®¬, 㤮¢«¥â¢®à¨âáï á®®â®è¥¨¥ (4a) ⥮६ë.DZãáâì λb0 6= 0. ®£¤ íâ®â ¬®¨â¥«ì ¬®® áç¨â âì ¥¤¨¨æ¥©. DZ®¤áâ ¢«ïï ¢ (iii) ¢ëà ¥¨¥ p_ · y (t; u(·) + pϕbx (t) ¨ ¨â¥£à¨àãï ¯® ç áâï¬,¯®«ãç ¥¬ (4b). «ãç © λ0 = 0 âਢ¨ «¥.⊓⊔171. £à ¯à¨¬¥ï« ¬¥â®¤®«®£¨î, ®¯¨á ãî ¢ ⥮६¥ 4, ç¨ ï á 1759 £®¤ . DZ¥à¢®¥ áâண®¥ ¤®ª § ⥫ìá⢮¥®¡å®¤¨¬ëå ãá«®¢¨© íªáâ६㬠¢ ¤®áâ â®ç® ®¡é¥© § ¤ ç¥ ¢ ਠ樮®£® ¨áç¨á«¥¨ï (á室®© á § ¤ 祩 (P4 )) ¡ë«® ¤ ® ©¥à®¬ ¢ 1886£.RπRπDZਬ¥à 4.
J0 (x(·)) = 0 x2 (t)dt → max, J1 (x(·)) = 0 x_ 2 (t)dt = 1x(0) = x(π ) = 0.áâ®à¨ç¥áª¨© ª®¬¬¥â ਩.DZ®áâ㯨¬ \¯® £à ã", á®áâ ¢¨¢ äãªæ¨î £à ¨ ¯à¨¬¥¨¢(ª ¯®«ã祮© ¯à®á⥩襩 § ¤ ç¥) ãà ¢¥¨¥ ©«¥à . (¯à ¢¥¤«¨¢®áâì í⮣®¯à¨ñ¬ ®¯à ¢¤ë¢ ¥âáï ⥬, çâ® ¢¢¥¤ï ®¢®¥ ¯¥p¥¬¥®¥Ry (t) = 0t x2 (τ )dτ ¨ ¯p¨¬¥ïï ⥮p¥¬ã4 ¯®«ã稬 â® ¥ á ¬®¥.) ãªRπæ¨ï £à : L(x(·), λ0 , λ1 ) = 0 (−λ0 x2 (t) + λ1 x_ (t))dt, λ0 ≥ 0. p ¢¥¨e ©«¥p â ª®¢®: x + λx = 0 («¥£ª® ¤®ª §ë¢ ¥âáï, çâ® λ0 6=0). p ¥¢ë¬ ¨ ¨§®¯¥p¨¬¥âp¨ç¥áª®¬ã ¤ ë¬ ã¤®¢«¥â¢®pïîâ äãªæ¨¨ t 7→ kπ2 sin kt, k ∈ IN. ªá¨¬ «ì®¥ § 票¥ ¤®áâ ¢«ï¥â äãªæ¨ït 7→ π2 sin t.1.5. ¤ ç ®¯â¨¬ «ì®£® ã¯à ¢«¥¨ï.
DZà¨æ¨¯¬ ªá¨¬ã¬ DZ®âà • ¯ï⨤¥áïâë¥ £®¤ë ¤¢ ¤æ ⮣® ¢¥ª ¬®£¨¥ â¥å¨ç¥áª¨¥ § ¤ ç¨(¢ ç áâ®áâ¨, § ¤ ç¨ ª®á¬¨ç¥áª®© ¢¨£ 樨) ᯮᮡá⢮¢ «¨ à áè¨à¥¨î ⥬ ⨪¨ ¢ ਠ樮®£® ¨áç¨á«¥¨ï. ® ¢ëà §¨«®áì ¢â®¬, çâ® ¢ ª ç¥á⢥ ¤®¯®«¨â¥«ì®£® ®£à ¨ç¥¨ï áâ «¨ à áᬠâਢ âì ®£à ¨ç¥¨ï ã¯à ¢«¥¨ï ⨯ ¢ª«î票© u(t) ∈ U . ª®£® த ®£à ¨ç¥¨ï á¢ï§ ë á ®£à ¨ç¥®áâìî à¥áãàᮢ ¢§ ¤ ç å ã¯à ¢«¥¨ï (ª®£¤ ª« ¤ë¢ îâáï â¥å¨ç¥áª¨¥ ®£à ¨ç¥¨ï ᪮à®áâ¨, ã᪮२ï, § ¯ áë ⮯«¨¢ ¨ â.
¯.). ¥®à¨ï § ¤ ç ®¯â¨¬ «ì®£® ã¯à ¢«¥¨ï ¡ë« à §à ¡®â ¢ ®áᨨ ¢ 誮«¥. . DZ®âà .DZãáâì U ⊂ IRr , f : IR × IRn × U → IR, ϕ : IR × IRn × U → IRn äãªæ¨ïn + r + 1 ¯¥p¥¬¥®£® ¨ ®â®¡à ¥¨¥ ¨§ IR × IRn × U ¢ IRn (f = f (t, x, u),ϕ = ϕ(t, x, u)). áᬮâp¨¬ § ¤ çã:J (x(·), u(·))=Zt1t0f (t, x(t), u(t))dt → min,x_ = ϕ(t, x, u), x(ti ) = xi , i = 0, 1(P5 )18(§ ¤ ç á § ªà¥¯«ñ묨 ª®æ ¬¨).
â® | § ¤ ç ®¯â¨¬ «ì®£® ã¯à r¢«¥¨ï ( ¯®¬¨¬, çâ® ¥á«¨ U = IR , â® § ¤ ç (P5 ) §ë¢ ¥âáï § ¤ 祩 £à ¢ ਠ樮®£® ¨áç¨á«¥¨ï).Rãªæ¨î L((x(·), u(·)), λ) = tt01 L(t, x(t), x_ (t), u(t))dt, £¤¥ ¨â¥£à âL(t, x, x,_ u) = λ0 f (t, x, u) + p(t) · (x_ − ϕ(t, x, u)) §®¢ñ¬ äãªæ¨¥© £p § ¤ ç¨ (P5 ). ¡®p®¬ ¬®¨â¥«¥© £p (®¡®§ ç¥ë¬ ᨬ¢®«®¬ λ) §¤¥áì ï¥âáï ¯ p : ¢¥ªâ®p-äãªæ¨ïp : [t0 , t1 ℄ → (IRn )′ ¨ ç¨á«® λ0 ≥ 0.DZ à äãªæ¨© (x(·), u(·)) ¤®¯ãá⨬ ¢ § ¤ ç¥ (P5 ), ¥á«¨ ¢ â®çª 奯p¥p뢮á⨠u(·)㤮¢«¥â¢®pï¥âáï ¤¨ää¥p¥æ¨ «ì ï á¢ï§ì x_ (t) =ϕ(t, x(t), u(t)) ¨ ªp ¥¢ë¥ ãá«®¢¨ï: x(ti ) = xi , i = 0, 1. ®¯ãá⨬ãî ¯ àã(x(·), u(·)) ¡ã¤¥¬ §ë¢ âì ¤®¯ãáâ¨¬ë¬ ¯à®æ¥áᮬ. ¤ çã (P5 ) ¡ã¤¥¬ à áᬠâਢ âì ¢ ¯à®áâà á⢥ P C ([t0 , t1 ℄, IRr )ªãá®ç®-¥¯à¥àë¢ëå ®â®¡à ¥¨© ¨§ [t0 , t1 ℄ ¢ IRr (P | ®â á«®¢ pievise| ªãá®çë©, á®áâ ¢«¥ë© ¨§ ªã᪮¢).b(·)) §®¢ñ¬ ᨫìë¬ ¬¨b(·), u¯à¥¤¥«¥¨¥ 5.
®¯ãáâ¨¬ë© ¯à®æ¥áá (x¨¬ã¬®¬ ¢ § ¤ ç¥ (P5 ) ¨«¨ ®¯â¨¬ «ìë¬ ¯à®æ¥áᮬ, ¥á«¨ ¤«ï ¥ª®â®à®£® ç¨á« ε > 0 ¨ «î¡®© ¤®¯ãá⨬®© ¯ àë (x(·; u(·)), u(·)) â ª®©, çâ®b(·)kC ([t0 ,t1 ℄,IRn ) < ε, ¢ë¯®«¥® ¥à ¢¥á⢮:kx(·; u(·)) − x(·; ub(·)).J (u(·)) ≥ J (u¬¥¥â ¬¥á⮥®à¥¬ 5 (¥®¡å®¤¨¬ë¥ ãá«®¢¨ï ¬¨¨¬ã¬ ¢ § ¤ ç¥ ®¯â¨¬ «ì®£®ã¯à ¢«¥¨ï ¢ « £à ¥¢®© ä®à¬¥). DZãáâì ¤®¯ãáâ¨¬ë© ¯à®æ¥áá(xb(·), ub(·)) ï¥âáï ®¯â¨¬ «ìë¬ ¯à®æ¥áᮬ. ®£¤ , ¥á«¨ ¢ë¯®«¥ëf , fx , ϕ ¨ ϕx ¥¯à¥àë¢ë ¢b(t), U ) | t ∈ [t0 , t1 ℄} ⊂ IR × IRn × U , â® áã{(t, xn ′1¨ ¢¥ªâ®p-äãªæ¨ï p(·) ∈ P C ([t0 , t1 ℄, (IR ) ) (¥ãá«®¢¨ï £« ¤ª®áâ¨, á®áâ®ï騥 ¢ ⮬, çâ®®ªà¥áâ®á⨠¬®¥á⢠é¥áâ¢ãîâ ç¨á«®λ0 ≥ 0à ¢ë¥ ®¤®¢à¥¬¥® ã«î) â ª¨¥, çâ® ¢ë¯®«¥ë ãp ¢¥¨ï ©«¥p ¯®x:d bb x (t) = 0 ⇔ p_ = −pϕbx (t) + λ0 fbx (t)Lx_ (t) + Ldt¬¨¨¬ã¬ ¯® u:−¨ ãá«®¢¨¥b (τ ) ⇔b(τ ), xb_ (τ ), u) = LminL(τ, xub(τ ), v ) − p(τ ) · ϕ(τ, xb(τ ), v ) ≥ λ0 fb(τ ) − p(τ ) · ϕb(τ ) ∀v ∈ U.λ0 f (τ, x¤«ï «î¡®© â®çª¨τ¥¯p¥p뢮áâ¨b(·).u(5a)(5b)191.
誮«¥ DZ®âà ⥮६ 5 ¡ë« áä®à¬ã«¨à®¢ ¢ à ¢®á¨«ì®© £ ¬¨«ìâ®®¢®© ä®à¬¥. DZਢ¥¤ñ¬ ¥ñ. ¡®§ 稬 H = H (t, x, p, u) =p · ϕ(t, x, u) − λ0 f (t, x, u). ®£¤ , ¥á«¨ ¯à¨ ãá«®¢¨ïå £« ¤ª®á⨠¢ ⥮६¥ 5, ¯ à (xb(·), ub(·)) ï¥âáï ®¯â¨¬ «ìë¬ ¯à®æ¥áᮬ, â® ©¤ãâáïp(·) ∈ P C1 ([t0 , t1 ℄, (IRn )′ ) ¨ λ0 ≥ 0, ¥ à ¢ë¥ ã«î ®¤®¢à¥¬¥®, ¨â ª¨¥, çâ® ¢ë¯®«¥ë á«¥¤ãî騥 á®®â®è¥¨ï:x_ = ∂H⇔ x_ = ϕ,∂p∂H−p_ = ∂x⇔ (5a),maxu H (t, xb(t), p(t), u) = Hb (t) ⇔ (5b).â®â १ã«ìâ â §ë¢ îâ ¯à¨æ¨¯®¬ ¬ ªá¨¬ã¬ DZ®âà .1) DZ®áâ஥¨¥ ᥬ¥©á⢠¢ ਠ権. áᬮâp¨¬ \¯ ª¥â ¨£®«®ª", ¯®à®¤¥ë© ¡®àa¬¨ {α i }Ni=1 αi ∈IR+ ¨ N 1 = N (τ , v) = {(τi , vi )}Ni=1 , , t0 < τ1 ≤ τ2 ≤ .